MathIsimple
Lesson 2-3

Solving Exponential & Logarithmic Equations

Same-base, logarithmic methods, substitution techniques, and domain verification.

Learning Objectives

  • Use same-base transformations to equate exponents and solve.
  • Apply natural logs or common logs to linearize exponentials.
  • Perform substitution (e.g., t=2^x) to reduce to quadratics.
  • Solve log equations and check positivity of all arguments.
  • Interpret solutions in modeling contexts and reject extraneous roots.

Solution Strategies

Same-Base Method

Rewrite both sides as a^f(x) and a^g(x); if a>0,a≠1 then f(x)=g(x).

Take Logs

Apply ln or log to both sides; bring exponents down via power rule.

Substitution

Let t=a^x or t=b^x to convert to polynomial form; solve then back-substitute.

Domain Check

Ensure log arguments >0 and denominators ≠0; discard invalid candidates.

Worked Examples

Example 1: Same-Base Method

Solve 2x+3=822^{x+3}=8^2.

Show Solution

8=238=2^382=268^2=2^6. Equate exponents: x+3=6x+3=6x=3x=3.

Example 2: Taking Logs

Solve 3x=73^x=7 for x.

Show Solution

Take ln: x=log37=ln7ln3x=\log_3 7=\tfrac{\ln 7}{\ln 3} ≈ 1.771.

Example 3: Substitution t=2^x

Solve 4x102x+16=04^x - 10\cdot 2^x + 16 = 0.

Show Solution

Let t=2x>0t=2^x>0, then t210t+16=0t^2 - 10t + 16=0(t2)(t8)=0(t-2)(t-8)=0t=2t=2 or t=8t=8x=1x=1 or x=3x=3.

Example 4: Log Equation with Domain Check

Solve log2(x+1)+log2(x2)=log2(4x5)\log_2(x+1)+\log_2(x-2)=\log_2(4x-5).

Show Solution

Combine LHS: log2[(x+1)(x2)]\log_2[(x+1)(x-2)] ⇒ set arguments equal: (x+1)(x2)=4x5(x+1)(x-2)=4x-5x2x2=4x5x^2 - x - 2=4x-5x25x+3=0x^2 - 5x + 3=0x=5±132x=\tfrac{5\pm\sqrt{13}}{2}. Check domain: need x>2x>2 and 4x5>04x-5>0; only x=5+132x=\tfrac{5+\sqrt{13}}{2} valid.

Example 5: Mixed Techniques

Solve 22x+1=53x2^{2x+1} = 5\cdot 3^x.

Show Solution

Take ln: (2x+1)ln2=ln5+xln3(2x+1)\ln 2 = \ln 5 + x\ln 3x(2ln2ln3)=ln5ln2x(2\ln 2 - \ln 3)=\ln 5 - \ln 2x=ln(5/2)2ln2ln3x=\tfrac{\ln(5/2)}{2\ln 2 - \ln 3}.

Practice Problems

Problem 1

Solve 5x2=frac1255^{x-2}= frac{1}{25}.

Show Solution

1/25=521/25=5^{-2}x2=2x-2=-2x=0x=0.

Problem 2

Solve ln(x+3)ln(x1)=ln2\ln(x+3)-\ln(x-1)=\ln 2 (check domain).

Show Solution

Combine: ln(x+3x1)=ln2\ln\left(\tfrac{x+3}{x-1}\right)=\ln 2x+3x1=2\tfrac{x+3}{x-1}=2x+3=2x2x+3=2x-2x=5x=5; domain x>1, valid.

Problem 3

Solve 32x73x+12=03^{2x}-7\cdot 3^x+12=0.

Show Solution

Let t=3x>0t=3^x>0, then t27t+12=0t^2-7t+12=0(t3)(t4)=0(t-3)(t-4)=0t=3t=3 or t=4t=4x=1x=1 or x=log34x=\log_3 4.

Problem 4

Solve log4(x1)+log4(x3)=2\log_4(x-1)+\log_4(x-3)=2.

Show Solution

log4[(x1)(x3)]=2\log_4[(x-1)(x-3)]=2(x1)(x3)=16(x-1)(x-3)=16x24x13=0x^2-4x-13=0x=2±17x=2\pm \sqrt{17}. Domain requires x>3; valid root: x=2+17x=2+\sqrt{17}.

Problem 5

Solve e2x7ex+10=0e^{2x}-7e^{x}+10=0.

Show Solution

Let t=ex>0t=e^{x}>0, then t27t+10=0t^2-7t+10=0(t5)(t2)=0(t-5)(t-2)=0x=ln5x=\ln 5 or x=ln2x=\ln 2.

Key Takeaways

  • Convert to same base when feasible; otherwise apply ln/log.
  • Substitution turns exponential equations into polynomial ones.
  • Always check domains in log equations to avoid extraneous roots.
  • Interpret solutions within context; units and feasibility matter.

Advanced Techniques & Pitfalls

Mixed Bases

Use change-of-base inside equations to align bases before solving.

Extraneous Roots

After squaring or combining logs, verify domain to eliminate invalid solutions.

Practice Bank

Bank 1: Same-Base Conversion

  1. Rewrite both sides with a common base.
  2. Equate exponents and solve.
  3. Check numerical validity.

Bank 2: Taking Logs

  1. Apply ln to both sides carefully.
  2. Bring exponents down using power rule.
  3. Solve linear equation in x.

Bank 3: Substitution

  1. Let t=axt=a^x reduce to polynomial.
  2. Solve for t, then back-substitute.
  3. Reject negatives where t>0 required.

Bank 4: Log Equations

  1. Combine logs using identities.
  2. Translate to algebraic equation.
  3. Verify domain of each log argument.

Bank 5: Mixed Bases

  1. Use change-of-base inside equations.
  2. Control rounding error.
  3. Present answers to 3 decimals.

Bank 6: Inequalities

  1. Transform using monotonicity of bases.
  2. Be careful when base in (0,1).
  3. Express solution as intervals.

Bank 7: Parameter Recovery

  1. Use two conditions to solve for a and b.
  2. Check with a third point.
  3. State model explicitly.

Bank 8: Domain Pitfalls

  1. After squaring, re-check positivity.
  2. Eliminate extraneous solutions.
  3. Explain failures succinctly.

Bank 9: Application Word Problems

  1. Translate context to equations.
  2. Define units and parameters.
  3. Interpret solution.

Bank 10: Challenge Mix

  1. Mix same-base, logs, substitution.
  2. Show domain checks clearly.
  3. Provide exact and decimal forms.

FAQ (Extended)

Q: How to start with mixed exponential–log equations?

Combine logs when possible, or take logs to linearize exponentials; use substitution to simplify the structure.

Q: Quick domain checks after solving?

Substitute solutions back into each log’s argument and denominators to ensure positivity and nonzero; a number line helps avoid misses.