Same-base, logarithmic methods, substitution techniques, and domain verification.
Rewrite both sides as a^f(x) and a^g(x); if a>0,a≠1 then f(x)=g(x).
Apply ln or log to both sides; bring exponents down via power rule.
Let t=a^x or t=b^x to convert to polynomial form; solve then back-substitute.
Ensure log arguments >0 and denominators ≠0; discard invalid candidates.
Solve .
⇒ . Equate exponents: ⇒ .
Solve for x.
Take ln: ≈ 1.771.
Solve .
Let , then ⇒ ⇒ or ⇒ or .
Solve .
Combine LHS: ⇒ set arguments equal: ⇒ ⇒ ⇒ . Check domain: need and ; only valid.
Solve .
Take ln: ⇒ ⇒ .
Solve .
⇒ ⇒ .
Solve (check domain).
Combine: ⇒ ⇒ ⇒ ; domain x>1, valid.
Solve .
Let , then ⇒ ⇒ or ⇒ or .
Solve .
⇒ ⇒ ⇒ . Domain requires x>3; valid root: .
Solve .
Let , then ⇒ ⇒ or .
Use change-of-base inside equations to align bases before solving.
After squaring or combining logs, verify domain to eliminate invalid solutions.
Q: How to start with mixed exponential–log equations?
Combine logs when possible, or take logs to linearize exponentials; use substitution to simplify the structure.
Q: Quick domain checks after solving?
Substitute solutions back into each log’s argument and denominators to ensure positivity and nonzero; a number line helps avoid misses.