MathIsimple

Lesson 4-3: Parametric & Polar Systems

Master parametric curves, polar coordinates, derivatives, arc length, and coordinate conversions with applications to complex curves.

Learning Objectives

  • Find derivatives and tangents for parametric curves.
  • Graph and analyze polar coordinate equations.
  • Convert between rectangular and polar coordinates.
  • Calculate arc length for both parametric and polar curves.

Core Formulas

Parametric Derivatives

dydx=dy/dtdx/dt=g(t)f(t)\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}
d2ydx2=ddt(dydx)1dx/dt\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{dx/dt}

Polar Conversions

x=rcosθ,y=rsinθx = r\cos\theta, \quad y = r\sin\theta
r=x2+y2,θ=arctanyxr = \sqrt{x^2 + y^2}, \quad \theta = \arctan\frac{y}{x}

Parametric Curves

Definition

x=f(t),y=g(t)x = f(t), \quad y = g(t)

Where t is the parameter and f(t), g(t) are differentiable functions.

Tangent Lines

Slope=dydx=g(t)f(t)\text{Slope} = \frac{dy}{dx} = \frac{g'(t)}{f'(t)}
Point=(f(t0),g(t0))\text{Point} = (f(t_0), g(t_0))

Polar Coordinates

Basic Forms

r=acosθ(Circle)r = a\cos\theta \quad \text{(Circle)}
r=a(1+cosθ)(Cardioid)r = a(1 + \cos\theta) \quad \text{(Cardioid)}
r=acos(nθ)(Rose curve)r = a\cos(n\theta) \quad \text{(Rose curve)}

Polar Derivatives

dydx=rsinθ+rcosθrcosθrsinθ\frac{dy}{dx} = \frac{r'\sin\theta + r\cos\theta}{r'\cos\theta - r\sin\theta}

Where r' = dr/dθ

Worked Examples

Example 1: Parametric Tangent

Find the tangent line to the curve x=tsint,y=1costx = t - \sin t, y = 1 - \cos t at t=πt = \pi.

Solution:

x(t)=1cost,y(t)=sintx'(t) = 1 - \cos t, \quad y'(t) = \sin t
dydx=sint1cost\frac{dy}{dx} = \frac{\sin t}{1 - \cos t}
At t=π: slope =0, point =(π,2)\text{At } t = \pi: \text{ slope } = 0, \text{ point } = (\pi, 2)
Tangent: y=2\text{Tangent: } y = 2

Example 2: Polar to Rectangular

Convert the polar equation r=2cosθr = 2\cos\theta to rectangular form.

Solution:

r=2cosθr2=2rcosθr = 2\cos\theta \Rightarrow r^2 = 2r\cos\theta
x2+y2=2xx^2 + y^2 = 2x
x22x+y2=0(x1)2+y2=1x^2 - 2x + y^2 = 0 \Rightarrow (x-1)^2 + y^2 = 1
Circle: center (1,0), radius 1\text{Circle: center }(1,0), \text{ radius } 1

Arc Length Formulas

Parametric Arc Length

L=ab(dxdt)2+(dydt)2dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt

Polar Arc Length

L=αβr2+(drdθ)2dθL = \int_\alpha^\beta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta

Practice Problems

Problem 1

Find the slope of the tangent to x=t2,y=t3x = t^2, y = t^3 at t=2t = 2.

dydx=3t22t=3t2=3\frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2} = 3

Problem 2

Convert r=4sinθr = 4\sin\theta to rectangular form.

x2+(y2)2=4x^2 + (y-2)^2 = 4

Key Takeaways

  • Parametric curves provide flexible ways to describe complex curves.
  • Polar coordinates are ideal for circular and spiral patterns.
  • Derivatives in both systems require careful application of the chain rule.
  • Coordinate conversions are essential for solving problems in different systems.
This completes Unit 4. Return to Unit 4 Overview or continue to the next unit.