MathIsimple
Lesson 2.1: Function Definitions & Representations

What is a Function?

Each input maps to exactly one output. Learn domain, range, and how to represent functions in multiple ways with real meaning.

Learning Objectives

  • Define functions and identify domain/range
  • Use function notation f(x) and evaluate values
  • Translate between table, formula, and graph
  • Interpret contexts from representations

Definition & Notation

A function assigns every input in the domain exactly one output in the range. Notation: y=f(x)y=f(x).

Domain

All permissible x-values.

Range

All outputs f(x).

Function Value

f(4)f(4) means output at x=4x=4.

Three Representations

Formula

Example: y=2x+1y=2x+1

Table

(x, y): (0,1), (1,3), (2,5)

Graph

Straight line rising with slope 2

Deeper Concepts

Function as Mapping

A function is a mapping f:ABf: A\to B that assigns each xAx\in A a unique yBy\in B. The set AA is the domain; f(A)Bf(A)\subseteq B is the range (image).

Set notation for domain restrictions (example rational function): f(x)=1x2,Dom(f)={xR,,x2}f(x)=\tfrac{1}{x-2},\quad \mathrm{Dom}(f)=\{x\in\mathbb{R},|,x\neq 2\}

Piecewise definition: f(x)={x2,x0x,x<0f(x)=\begin{cases}x^2,& x\ge 0\\-x,& x<0\end{cases}

One-to-one, Onto, Inverse

One-to-one (injective): f(x1)=f(x2)x1=x2f(x_1)=f(x_2)\Rightarrow x_1=x_2. Onto (surjective): yB,xA:f(x)=y\forall y\in B,\exists x\in A: f(x)=y.

If ff is bijective, inverse f1f^{-1} exists. Example: f(x)=2x+1f(x)=2x+1 (on R\mathbb{R}) is bijective with f1(y)=y12f^{-1}(y)=\tfrac{y-1}{2}.

Composition preview: (gf)(x)=g(f(x))(g\circ f)(x)=g(f(x)) connects multi-stage processes.

Common Pitfalls

  • Confusing relation with function: a function cannot assign two different outputs to the same input.
  • Ignoring domain constraints: e.g., x\sqrt{x} requires x0x\ge 0 (over R\mathbb{R}); denominators cannot be zero.
  • Mistaking range for codomain: range is actual outputs f(A)f(A), not the entire codomain.
  • Reading graphs: vertical line test fails → not a function of xx.

Worked Examples

1) Table → Formula

Given: x: 1,2,3; y: 4,7,10

Increase per step: +3 → m=3m=3

Assume y=3x+by=3x+b; plug (1,4)(1,4)b=1b=1

Formula: y=3x+1y=3x+1

2) Domain with Radicals and Fractions

f(x)=x1x3f(x)=\dfrac{\sqrt{x-1}}{x-3}

Constraints: x10x1x-1\ge 0\Rightarrow x\ge 1, and x3x\neq 3

Domain: [1,3)(3,)[1,3)\cup(3,\infty)

3) Inverse Check (One-to-one on Restricted Domain)

f(x)=x2f(x)=x^2 is not one-to-one on R\mathbb{R}, but is bijective on [0,)[0,\infty).

Inverse there: f1(y)=yf^{-1}(y)=\sqrt{y}

Practice

1) Evaluate f(x)=3x2f(x)=3x-2 at x=4x=4

Solution
f(4)=342=10f(4)=3\cdot 4-2=10

2) Identify domain of y=1x2y=\dfrac{1}{x-2}

Solution
All real xx except x=2x=2

3) Determine whether the relation is a function: x=±yx=\pm \sqrt{y}

Solution
Fails vertical line test (two x-values for one y). Not a function of yy.

4) Find inverse on restricted domain: f(x)=x2, x0f(x)=x^2,\ x\ge 0

Solution
y=x2x=y (x0); f1(y)=yy=x^2\Rightarrow x=\sqrt{y}\ (x\ge 0);\ f^{-1}(y)=\sqrt{y}