MathIsimple
Back to Calculus Hub
Integration Techniques

Substitution Method for Integration

Master u-substitution and trigonometric substitution for complex integrals

1. U-Substitution (Chain Rule Reversal)

Theorem 1.1: Substitution Rule

If u=g(x)u = g(x) is a differentiable function, then:

f(g(x))g(x)dx=f(u)du\int f(g(x))g'(x)\,dx = \int f(u)\,du

This is the reverse of the chain rule for differentiation.

Example 1.1: Basic U-Substitution

Find: 2xcos(x2)dx\int 2x\cos(x^2)\,dx

Solution:

Step 1: Let u=x2u = x^2, then du=2xdxdu = 2x\,dx

Step 2: Substitute:

2xcos(x2)dx=cos(u)du=sin(u)+C\int 2x\cos(x^2)\,dx = \int \cos(u)\,du = \sin(u) + C

Step 3: Back-substitute:

=sin(x2)+C= \sin(x^2) + C
Example 1.2: Adjusting Constants

Find: x1x2dx\int x\sqrt{1-x^2}\,dx

Solution:

Step 1: Let u=1x2u = 1-x^2, then du=2xdxdu = -2x\,dx

Step 2: We have xdxx\,dx but need 2xdx-2x\,dx. Multiply by 1/2-1/2:

x1x2dx=12udu\int x\sqrt{1-x^2}\,dx = -\frac{1}{2}\int \sqrt{u}\,du

Step 3: Integrate:

=1223u3/2+C=13(1x2)3/2+C= -\frac{1}{2} \cdot \frac{2}{3}u^{3/2} + C = -\frac{1}{3}(1-x^2)^{3/2} + C

2. Trigonometric Substitution

Standard Trigonometric Substitutions

For a2x2\sqrt{a^2 - x^2}:

Let x=asinθx = a\sin\theta, then a2x2=acosθ\sqrt{a^2-x^2} = a\cos\theta

For a2+x2\sqrt{a^2 + x^2}:

Let x=atanθx = a\tan\theta, then a2+x2=asecθ\sqrt{a^2+x^2} = a\sec\theta

For x2a2\sqrt{x^2 - a^2}:

Let x=asecθx = a\sec\theta, then x2a2=atanθ\sqrt{x^2-a^2} = a\tan\theta

Example 2.1: Trigonometric Substitution

Find: 11x2dx\int \frac{1}{\sqrt{1-x^2}}\,dx

Solution:

Step 1: Let x=sinθx = \sin\theta, then dx=cosθdθdx = \cos\theta\,d\theta

Step 2: Substitute:

1x2=1sin2θ=cosθ\sqrt{1-x^2} = \sqrt{1-\sin^2\theta} = \cos\theta
11x2dx=cosθcosθdθ=dθ=θ+C\int \frac{1}{\sqrt{1-x^2}}\,dx = \int \frac{\cos\theta}{\cos\theta}\,d\theta = \int d\theta = \theta + C

Step 3: Back-substitute: θ=arcsinx\theta = \arcsin x

=arcsinx+C= \arcsin x + C
Example 2.2: With Quadratic

Find: 1x2x24dx\int \frac{1}{x^2\sqrt{x^2-4}}\,dx

Solution:

Step 1: Let x=2secθx = 2\sec\theta, then dx=2secθtanθdθdx = 2\sec\theta\tan\theta\,d\theta

Step 2: Substitute:

x24=4sec2θ4=2tanθ\sqrt{x^2-4} = \sqrt{4\sec^2\theta-4} = 2\tan\theta
1x2x24dx=2secθtanθ4sec2θ2tanθdθ\int \frac{1}{x^2\sqrt{x^2-4}}\,dx = \int \frac{2\sec\theta\tan\theta}{4\sec^2\theta \cdot 2\tan\theta}\,d\theta
=14cosθdθ=14sinθ+C= \frac{1}{4}\int \cos\theta\,d\theta = \frac{1}{4}\sin\theta + C

Step 3: Back-substitute using sinθ=x24x\sin\theta = \frac{\sqrt{x^2-4}}{x}:

=x244x+C= \frac{\sqrt{x^2-4}}{4x} + C