MathIsimple
Back to Articles
Integration Methods
Intermediate-Advanced

Integration of Trigonometric Rational Functions

Master the Weierstrass Substitution and Special Techniques for Trigonometric Integration

What You'll Learn
  • • Definition and general methods for trigonometric rational functions
  • • Weierstrass substitution (t = tan(x/2)): principles and applications
  • • 8 special solution techniques using trigonometric identities
  • • Strategic case-by-case analysis
  • • 6 comprehensive examples, from fundamental to advanced

1. Overview of Trigonometric Rational Function Integration

Definition 1.1: Trigonometric Rational Functions

Integrals of the form R(sinx,cosx)dx\int R(\sin x, \cos x)\,dx are called trigonometric rational function integrals, where R(u,v)R(u, v) is a rational function in u,vu, v.

Examples: sinx1+cosxdx\int \frac{\sin x}{1 + \cos x}\,dx,135cosxdx\int \frac{1}{3 - 5\cos x}\,dx, etc.

Solution Strategy

Trigonometric rational function integrals typically follow three solution paths:

  1. Weierstrass Substitution: Universal method that always reduces to rational function integration
  2. Trigonometric Identity Transformations: Use sum-to-product, double-angle formulas, etc. to simplify
  3. Special Techniques: Choose clever methods based on the integrand's characteristics

2. Weierstrass Substitution

Theorem 2.1: Weierstrass Substitution Formulas

Let t=tanx2t = \tan\frac{x}{2}, then:

sinx=2t1+t2\sin x = \frac{2t}{1+t^2}
cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2}
dx=21+t2dtdx = \frac{2}{1+t^2}\,dt

This transforms the trigonometric rational function integral into a rational function integral in tt.

Usage Precautions

  • While "universal," this substitution can lead to computational complexity
  • First consider whether trigonometric identities can simplify the problem
  • When the integrand has special symmetry, simpler methods often exist
  • Pay attention to domain changes after substitution

3. Classification of Special Solution Methods

Case 1: Numerator is derivative of denominator

If R(sinx,cosx)R(\sin x, \cos x) can be written as:

f(sinx,cosx)f(sinx,cosx)\frac{f'(\sin x, \cos x)}{f(\sin x, \cos x)}

Then the result is directly lnf(sinx,cosx)+C\ln|f(\sin x, \cos x)| + C

Case 2: Power-reduction formulas

For sinnxdx\int \sin^n x\,dx or cosnxdx\int \cos^n x\,dx:

Use reduction formulas or sin2x=1cos2x2\sin^2 x = \frac{1-\cos 2x}{2}

Case 3: Sum-to-product identities

For sinaxsinbx\sin ax \cdot \sin bx type:

sinaxsinbx=12[cos(ab)xcos(a+b)x]\sin ax \sin bx = \frac{1}{2}[\cos(a-b)x - \cos(a+b)x]
Case 4: Homogenization

For asinx+bcosxcsinx+dcosx\frac{a\sin x + b\cos x}{c\sin x + d\cos x}:

Set integrand = λ(csinx+dcosx)+μ\lambda(c\sin x + d\cos x)' + \mu

4. Detailed Example Solutions

Example 4.1: Standard Application of Weierstrass Substitution

Problem: Find 135cosxdx\int \frac{1}{3-5\cos x}\,dx

Solution:

Step 1: Apply Weierstrass substitution

Let t=tanx2t = \tan\frac{x}{2}, then:

cosx=1t21+t2,dx=21+t2dt\cos x = \frac{1-t^2}{1+t^2}, \quad dx = \frac{2}{1+t^2}\,dt

Step 2: Substitute and simplify

I=1351t21+t221+t2dt=23(1+t2)5(1t2)dt=23+3t25+5t2dt=28t22dt=14t21dt\begin{aligned} I &= \int \frac{1}{3-5\cdot\frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2}\,dt \\ &= \int \frac{2}{3(1+t^2) - 5(1-t^2)}\,dt \\ &= \int \frac{2}{3 + 3t^2 - 5 + 5t^2}\,dt \\ &= \int \frac{2}{8t^2 - 2}\,dt = \int \frac{1}{4t^2 - 1}\,dt \end{aligned}

Step 3: Partial fraction decomposition

14t21=1(2t1)(2t+1)=12(12t112t+1)\frac{1}{4t^2-1} = \frac{1}{(2t-1)(2t+1)} = \frac{1}{2}\left(\frac{1}{2t-1} - \frac{1}{2t+1}\right)

Step 4: Integrate and back-substitute

I=12(12t112t+1)dt=14ln2t114ln2t+1+C=14ln2t12t+1+C=14ln2tanx212tanx2+1+C\begin{aligned} I &= \frac{1}{2}\int\left(\frac{1}{2t-1} - \frac{1}{2t+1}\right)dt \\ &= \frac{1}{4}\ln|2t-1| - \frac{1}{4}\ln|2t+1| + C \\ &= \frac{1}{4}\ln\left|\frac{2t-1}{2t+1}\right| + C \\ &= \frac{1}{4}\ln\left|\frac{2\tan\frac{x}{2}-1}{2\tan\frac{x}{2}+1}\right| + C \end{aligned}

Answer

I=14ln2tanx212tanx2+1+CI = \frac{1}{4}\ln\left|\frac{2\tan\frac{x}{2}-1}{2\tan\frac{x}{2}+1}\right| + C
Example 4.2: Simplification via Trigonometric Identities

Problem: Find 11+sinx+cosxdx\int \frac{1}{1+\sin x+\cos x}\,dx

Solution:

Method 1: Trigonometric Identities (Recommended)

Step 1: Apply half-angle formulas

Use sinx=2sinx2cosx2\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} and cosx=cos2x2sin2x2\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2}:

1+sinx+cosx=sin2x2+cos2x2+2sinx2cosx2+cos2x2sin2x2=2cos2x2+2sinx2cosx2=2cosx2(cosx2+sinx2)\begin{aligned} 1 + \sin x + \cos x &= \sin^2\frac{x}{2} + \cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{x}{2} - \sin^2\frac{x}{2} \\ &= 2\cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} \\ &= 2\cos\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) \end{aligned}

Step 2: Substitute into integral

I=12cosx2(cosx2+sinx2)dxI = \int \frac{1}{2\cos\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)}\,dx

Let u=tanx2u = \tan\frac{x}{2}, then du=12sec2x2dxdu = \frac{1}{2}\sec^2\frac{x}{2}\,dx:

I=1u+1du=lnu+1+C=lntanx2+1+CI = \int \frac{1}{u+1}\,du = \ln|u+1| + C = \ln\left|\tan\frac{x}{2}+1\right| + C

Method 2: Weierstrass Substitution

Let t=tanx2t = \tan\frac{x}{2} yields the same result, but with more tedious calculations.

Answer

I=ln1+tanx2+CI = \ln\left|1 + \tan\frac{x}{2}\right| + C
Example 4.3: Matching Derivative in Numerator

Problem: Find 11cosxdx\int \frac{1}{1-\cos x}\,dx

Solution:

Step 1: Apply half-angle formula

1cosx=2sin2x21 - \cos x = 2\sin^2\frac{x}{2}

Step 2: Substitute into integral

I=12sin2x2dx=12csc2x2dx=12(2cotx2)+C=cotx2+C\begin{aligned} I &= \int \frac{1}{2\sin^2\frac{x}{2}}\,dx = \frac{1}{2}\int \csc^2\frac{x}{2}\,dx \\ &= \frac{1}{2} \cdot (-2\cot\frac{x}{2}) + C = -\cot\frac{x}{2} + C \end{aligned}

Verification

Differentiate: ddx(cotx2)=12csc2x2=12sin2x2=11cosx\frac{d}{dx}(-\cot\frac{x}{2}) = \frac{1}{2}\csc^2\frac{x}{2} = \frac{1}{2\sin^2\frac{x}{2}} = \frac{1}{1-\cos x}

Answer

I=cotx2+CI = -\cot\frac{x}{2} + C
Example 4.4: Homogenization Method

Problem: Find cosxsinx+cosxdx\int \frac{\cos x}{\sin x + \cos x}\,dx

Solution:

Approach: Undetermined Coefficients

Express the numerator as a linear combination of the denominator's derivative plus the denominator itself:

cosx=λ(sinx+cosx)+μ(sinx+cosx)\cos x = \lambda(\sin x + \cos x)' + \mu(\sin x + \cos x)

Step 1: Find undetermined coefficients

Since (sinx+cosx)=cosxsinx(\sin x + \cos x)' = \cos x - \sin x, we have:

cosx=λ(cosxsinx)+μ(sinx+cosx)\cos x = \lambda(\cos x - \sin x) + \mu(\sin x + \cos x)

Compare coefficients:

{λ+μ=1(coeff. of cosx)λ+μ=0(coeff. of sinx)\begin{cases} \lambda + \mu = 1 \quad (\text{coeff. of } \cos x) \\ -\lambda + \mu = 0 \quad (\text{coeff. of } \sin x) \end{cases}

Solving: λ=12,μ=12\lambda = \frac{1}{2}, \mu = \frac{1}{2}

Step 2: Decompose the integral

I=12(cosxsinx)+12(sinx+cosx)sinx+cosxdx=12cosxsinxsinx+cosxdx+121dx=12lnsinx+cosx+x2+C\begin{aligned} I &= \int \frac{\frac{1}{2}(\cos x - \sin x) + \frac{1}{2}(\sin x + \cos x)}{\sin x + \cos x}\,dx \\ &= \frac{1}{2}\int \frac{\cos x - \sin x}{\sin x + \cos x}\,dx + \frac{1}{2}\int 1\,dx \\ &= \frac{1}{2}\ln|\sin x + \cos x| + \frac{x}{2} + C \end{aligned}

Answer

I=12lnsinx+cosx+x2+CI = \frac{1}{2}\ln|\sin x + \cos x| + \frac{x}{2} + C
Example 4.5: Power Reduction for High Powers

Problem: Find sin3xcos3xdx\int \sin^3 x \cos^3 x\,dx

Solution:

Step 1: Extract a factor

I=sin3xcos3xdx=sin2xcos2xsinxcosxdx=(sinxcosx)2sinxcosxdx\begin{aligned} I &= \int \sin^3 x \cos^3 x\,dx = \int \sin^2 x \cos^2 x \cdot \sin x \cos x\,dx \\ &= \int (\sin x \cos x)^2 \cdot \sin x \cos x\,dx \end{aligned}

Step 2: Apply double-angle formula

Use sin2x=2sinxcosx\sin 2x = 2\sin x \cos x:

I=(sin2x2)2sin2x2dx=18sin32xdx=18sin22xsin2xdx\begin{aligned} I &= \int \left(\frac{\sin 2x}{2}\right)^2 \cdot \frac{\sin 2x}{2}\,dx \\ &= \frac{1}{8}\int \sin^3 2x\,dx = \frac{1}{8}\int \sin^2 2x \cdot \sin 2x\,dx \end{aligned}

Step 3: Use sin22x=1cos22x\sin^2 2x = 1 - \cos^2 2x

I=18(1cos22x)sin2xdx=18(1cos22x)d(cos2x2)=116(1cos22x)d(cos2x)\begin{aligned} I &= \frac{1}{8}\int (1 - \cos^2 2x)\sin 2x\,dx \\ &= \frac{1}{8}\int (1 - \cos^2 2x)\,d(-\frac{\cos 2x}{2}) \\ &= -\frac{1}{16}\int (1 - \cos^2 2x)\,d(\cos 2x) \end{aligned}

Let u=cos2xu = \cos 2x:

I=116(1u2)du=116(uu33)+CI = -\frac{1}{16}\int (1-u^2)\,du = -\frac{1}{16}\left(u - \frac{u^3}{3}\right) + C

Step 4: Back-substitute

I=116cos2x+148cos32x+CI = -\frac{1}{16}\cos 2x + \frac{1}{48}\cos^3 2x + C

Answer

I=116cos2x+148cos32x+CI = -\frac{1}{16}\cos 2x + \frac{1}{48}\cos^3 2x + C
Example 4.6: Complex Comprehensive Problem

Problem: Find 54cosx(2+cosx)2sinxdx\int \frac{5-4\cos x}{(2+\cos x)^2\sin x}\,dx

Solution:

Step 1: Attempt numerator adjustment

Notice the denominator is (2+cosx)2sinx(2+\cos x)^2\sin x. We could try expressing the numerator in terms of the denominator's derivative.

Set:

54cosx=Addx[(2+cosx)2]+B(2+cosx)2ddx(sinx)5 - 4\cos x = A\frac{d}{dx}[(2+\cos x)^2] + B(2+\cos x)^2\cdot\frac{d}{dx}(\sin x)

Step 2: Weierstrass substitution (simpler approach)

Let t=tanx2t = \tan\frac{x}{2}, then:

sinx=2t1+t2,cosx=1t21+t254cosx=541t21+t2=5(1+t2)4(1t2)1+t2=1+9t21+t22+cosx=2+1t21+t2=3+t21+t2\begin{aligned} \sin x &= \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2} \\ 5 - 4\cos x &= 5 - 4\cdot\frac{1-t^2}{1+t^2} = \frac{5(1+t^2) - 4(1-t^2)}{1+t^2} = \frac{1+9t^2}{1+t^2} \\ 2 + \cos x &= 2 + \frac{1-t^2}{1+t^2} = \frac{3+t^2}{1+t^2} \end{aligned}

Step 3: Substitute and simplify

I=1+9t21+t2(3+t21+t2)22t1+t221+t2dt=(1+9t2)2(1+t2)(3+t2)22t(1+t2)dt=1+9t2t(3+t2)2dt\begin{aligned} I &= \int \frac{\frac{1+9t^2}{1+t^2}}{\left(\frac{3+t^2}{1+t^2}\right)^2 \cdot \frac{2t}{1+t^2}} \cdot \frac{2}{1+t^2}\,dt \\ &= \int \frac{(1+9t^2) \cdot 2 \cdot (1+t^2)}{(3+t^2)^2 \cdot 2t \cdot (1+t^2)}\,dt \\ &= \int \frac{1+9t^2}{t(3+t^2)^2}\,dt \end{aligned}

This integral requires partial fraction decomposition, which is fairly involved.

Note

This is a computationally intensive problem requiring patient partial fraction work. In actual exams, such problems typically come with additional hints or simplifications.

5. Method Selection Decision Tree

1

Observe special structure

  • Can half-angle formulas be applied directly? e.g., 11±cosx\frac{1}{1\pm\cos x}
  • Is the numerator the derivative of the denominator?
  • Can homogenization work? e.g., asinx+bcosxcsinx+dcosx\frac{a\sin x + b\cos x}{c\sin x + d\cos x}
2

Try trigonometric identities

  • Sum-to-product, double-angle, power-reduction formulas
  • Can common factors be extracted to simplify?
3

Use Weierstrass substitution

When the first two approaches fail, the Weierstrass substitution t=tanx2t = \tan\frac{x}{2} will always work

6. Common Pitfalls

Pitfall 1

Domain issues with Weierstrass substitution

t=tanx2t = \tan\frac{x}{2} is undefined at x=(2k+1)πx = (2k+1)\pi; pay attention to integration intervals

Pitfall 2

Incorrect trigonometric identity signs

Note the signs in sin2x=1cos2x2\sin^2 x = \frac{1-\cos 2x}{2} and cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2}

Pitfall 3

Signs during back-substitution

When converting from tt back to xx, watch for absolute value signs and positive/negative signs

Pitfall 4

Integration constant

Always remember to include the constant of integration CC