MathIsimple
Back to Calculus

Calculus Practice Set 1

2 Hours

14 challenging problems

1Problem 1

Let y=(sin2x)x(arcsin2x)xy = (\sin 2x)^x (\arcsin 2x)^x, find dydx\frac{dy}{dx}.

2Problem 2

Given y=y(x)y = y(x) determined by y=3f(xy)+ln(1sinx)y = 3f(xy) + \ln(1-\sin x), find dydx\frac{dy}{dx}.

3Problem 3

Given parametric equations {x=3t3+2t+3y=0t(3u+1)sinu2du\begin{cases} x = 3t^3+2t+3 \\ y = \int_0^t(3u+1)\sin u^2\,du \end{cases}, find d2ydx2t=t0\frac{d^2y}{dx^2}\bigg|_{t=t_0}.

4Problem 4

Calculate: 121+x31.1x23dx\int_1^2 \frac{1+\sqrt[3]{x}}{1.1\sqrt[3]{x^2}}\,dx

5Problem 5

Calculate or state: 1+1x2x21dx\int_1^{+\infty}\frac{1}{x^2\sqrt{x^2-1}}\,dx

6Problem 6

Find: limx0(1ln(1+sinx)+1ln(1sinx))\lim_{x\to 0}\left(\frac{1}{\ln(1+\sin x)}+\frac{1}{\ln(1-\sin x)}\right)

7Problem 7

Find: limx0tanxx1x3\lim_{x\to 0}\frac{\tan x - x}{\sqrt{1-x^3}}

8Problem 8

Find: limxπ2(sinx)cosx\lim_{x\to\frac{\pi}{2}}(\sin x)^{\cos x}

9Problem 9

Find n=1(x2)nn3n\sum_{n=1}^{\infty}\frac{(x-2)^n}{n3^n}, convergence radius and interval.

10Problem 10

Given f(x)=1x52x3f(x)=\frac{1}{x^5-2x-3}, determine number of zeros of antiderivative and their locations.

11Problem 11

Calculate: 1+x2x3x3(1+x2)ln(1+x2)dx\int\frac{1+x^2-x^3}{x^3(1+x^2)}\ln(1+x^2)\,dx

12Problem 12

Let f(x)C[0,1]f(x)\in C[0,1] be concave. Prove: (1) There exists ξ(0,1)\xi\in(0,1) with specific property; (2) If integral condition holds, uniqueness follows.

13Problem 13

Given f(x)f(x) on [0,+)[0,+\infty) with f(x)<0f'(x)<0 and integral equation, find f(x)f''(x) and analyze curve properties.

14Problem 14

Let an=01tannxdxa_n=\int_0^1\tan^n x\,dx, n2n\geq 2. (1) Calculate an+an+2a_n+a_{n+2} and prove inequality; (2) Prove series n=2(1)nan\sum_{n=2}^{\infty}(-1)^na_n converges.