MathIsimple
Back to Calculus

Calculus Practice Set 10

2 Hours

12 challenging problems

1Problem 1

Calculate improper integral: 0+exdx\int_0^{+\infty}e^{-\sqrt{x}}\,dx

2Problem 2

Find limit: limx+[(x7+x6)17(x7+x)17]\lim_{x\to+\infty}\left[(x^7+x^6)^{\frac{1}{7}}-(x^7+x)^{\frac{1}{7}}\right]

3Problem 3

Calculate indefinite integral: 1+sinx(1+cosx)sinxdx\int\frac{1+\sin x}{(1+\cos x)\sin x}\,dx, x(0,π2)x\in\left(0,\frac{\pi}{2}\right)

4Problem 4

(1) Given x>0x > 0, prove: xx22<ln(1+x)<xx - \frac{x^2}{2} < \ln(1+x) < x

(2) Find: limn(1+2n2)(1+2n2)(1+nn2)\lim_{n\to\infty}\left(1+\frac{2}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right)

5Problem 5

Find curve y=ex+ex2y = \frac{e^x+e^{-x}}{2} in region [0,1][0,1] arc length.

6Problem 6

Given function f(x)=lncosxf(x) = \ln\cos x, let f(x)f(x) when x0x\to 0 have expansion f(x)=a0+a1x+a2x2+a3x3+a4x4+o(x4)f(x) = a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+o(x^4), find coefficients a0,a1,a2,a3,a4a_0, a_1, a_2, a_3, a_4.

7Problem 7

Find f(x)=3x2+5x3f(x) = -3x^2+5x^3 extrema value.

8Problem 8

Given parametric equations {x=etcosty=etsint\begin{cases} x = e^t\cos t \\ y = e^t\sin t \end{cases}, find dydx,d2ydx2\frac{dy}{dx}, \frac{d^2y}{dx^2}, where t(0,π4)t\in\left(0,\frac{\pi}{4}\right).

9Problem 9

Known sequence f(x)f(x) on [0,+)[0,+\infty) continuous with strictly increasing property, and known x[0,1]\forall x\in[0,1], there exists g(x)0g(x)\geq 0. Prove: There exists x0[0,1]\exists x_0\in[0,1] such that 01f(x)g(x)dx=f(x0)01g(x)dx\int_0^1f(x)g(x)\,dx = f(x_0)\int_0^1g(x)\,dx.

10Problem 10

Known sequence f(x)f(x) on [0,+)[0,+\infty) continuous, on (0,+)(0,+\infty) differentiable with f(0)<0f(0) < 0, and for all x>0\forall x > 0, f(x)>1f'(x) > 1. Prove: There exists f(x)f(x) on [0,+)[0,+\infty) with only one zero.

11Problem 11

Let function f(x)f(x) on (0,1)(0,1) with proper definition, and satisfies for all x1,x2(0,1)x_1,x_2\in(0,1), x1<x2x_1 < x_2 have f(x2)f(x1)x2x1f(x3)f(x1)x3x1f(x3)f(x2)x3x2\frac{f(x_2)-f(x_1)}{x_2-x_1} \geq \frac{f(x_3)-f(x_1)}{x_3-x_1} \geq \frac{f(x_3)-f(x_2)}{x_3-x_2}.

Prove: For all nN\forall n\in\mathbb{N}, let an=(n+2)[f(12)f(121n+2)]a_n = (n+2)\left[f\left(\frac{1}{2}\right)-f\left(\frac{1}{2}-\frac{1}{n+2}\right)\right] converge. Also, limnan=α\lim_{n\to\infty}a_n = \alpha, where α\alpha can be obtained from α>0\alpha > 0.

12Problem 12

Let f(x)f(x) on [0,1][0,1] continuous, on (0,1)(0,1) has derivative with x[0,1]\forall x\in[0,1], there exists 01f(t)dt1x32\int_0^1f(t)\,dt \geq \frac{1-x^3}{2} hold. Prove: 01[f(t)]2dt512\int_0^1[f(t)]^2\,dt \geq \frac{5}{12}