MathIsimple
π
θ
Δ
ε
Home/Calculus/Chapter 6/Computation Techniques
CALC-6.4
3-4 hours
Essential Skills

Computation Techniques

Master the art of computing definite integrals: substitution, integration by parts, symmetry tricks, and the famous Wallis and Stirling formulas.

Learning Objectives
Master substitution for definite integrals
Apply integration by parts with definite limits
Exploit symmetry properties (odd/even functions)
Handle periodic function integrals
Derive and apply the Wallis formula
Understand Stirling's approximation
Recognize common integral patterns
Solve challenging competition-level problems

1. Substitution Method

Theorem 6.19: Substitution for Definite Integrals

Let fC[a,b]f \in C[a, b] and ϕC1[α,β]\phi \in C^1[\alpha, \beta] withϕ(α)=a\phi(\alpha) = a, ϕ(β)=b\phi(\beta) = b, and aϕ(t)ba \leq \phi(t) \leq b for all t[α,β]t \in [\alpha, \beta]. Then:

abf(x)dx=αβf(ϕ(t))ϕ(t)dt\int_a^b f(x)\,dx = \int_\alpha^\beta f(\phi(t))\phi'(t)\,dt
Proof of Theorem 6.19:

Let FF be an antiderivative of ff. By the chain rule:

ddt[F(ϕ(t))]=F(ϕ(t))ϕ(t)=f(ϕ(t))ϕ(t)\frac{d}{dt}[F(\phi(t))] = F'(\phi(t))\phi'(t) = f(\phi(t))\phi'(t)

By Newton-Leibniz:

αβf(ϕ(t))ϕ(t)dt=F(ϕ(t))αβ=F(ϕ(β))F(ϕ(α))=F(b)F(a)\int_\alpha^\beta f(\phi(t))\phi'(t)\,dt = F(\phi(t))\Big|_\alpha^\beta = F(\phi(\beta)) - F(\phi(\alpha)) = F(b) - F(a)

This equals abf(x)dx\int_a^b f(x)\,dx.

Remark 6.7: Key Points for Substitution

1. Change the Limits!

When x=ϕ(t)x = \phi(t), find new limits: if x=ax = a then t=?t = ?, if x=bx = b then t=?t = ?.

2. No Need to Back-Substitute

Unlike indefinite integrals, you evaluate at the new limits directly—no need to convert back to xx.

3. Limits Can Swap

If ϕ(α)=b\phi(\alpha) = b and ϕ(β)=a\phi(\beta) = a, the formula still works (with a sign change absorbed).

Example 6.17: Basic Substitution

Compute: 02x4x2dx\int_0^2 x\sqrt{4 - x^2}\,dx

Solution:

Let u=4x2u = 4 - x^2, so du=2xdxdu = -2x\,dx, i.e., xdx=12dux\,dx = -\frac{1}{2}du.

When x=0x = 0: u=4u = 4. When x=2x = 2: u=0u = 0.

02x4x2dx=40u(12)du=1204udu\int_0^2 x\sqrt{4 - x^2}\,dx = \int_4^0 \sqrt{u} \cdot \left(-\frac{1}{2}\right)du = \frac{1}{2}\int_0^4 \sqrt{u}\,du
=1223u3/204=138=83= \frac{1}{2} \cdot \frac{2}{3}u^{3/2}\Big|_0^4 = \frac{1}{3} \cdot 8 = \frac{8}{3}
Example 6.18: Trigonometric Substitution

Compute: 0aa2x2dx\int_0^a \sqrt{a^2 - x^2}\,dx

Solution:

Let x=asinθx = a\sin\theta, so dx=acosθdθdx = a\cos\theta\,d\theta.

When x=0x = 0: θ=0\theta = 0. When x=ax = a: θ=π/2\theta = \pi/2.

a2x2=a2(1sin2θ)=acosθ\sqrt{a^2 - x^2} = \sqrt{a^2(1 - \sin^2\theta)} = a\cos\theta
0aa2x2dx=0π/2acosθacosθdθ=a20π/2cos2θdθ\int_0^a \sqrt{a^2 - x^2}\,dx = \int_0^{\pi/2} a\cos\theta \cdot a\cos\theta\,d\theta = a^2 \int_0^{\pi/2} \cos^2\theta\,d\theta

Using cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos 2\theta}{2}:

=a212[θ+sin2θ2]0π/2=a212π2=πa24= a^2 \cdot \frac{1}{2} \left[\theta + \frac{\sin 2\theta}{2}\right]_0^{\pi/2} = a^2 \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi a^2}{4}

Geometric interpretation: This is the area of a quarter circle of radius aa!

Example 6.19: Clever Substitution

Compute: 12x92x2dx\int_{-1}^2 \frac{x}{\sqrt{9 - 2x^2}}\,dx

Solution:

Let u=92x2u = 9 - 2x^2, so du=4xdxdu = -4x\,dx.

When x=1x = -1: u=7u = 7. When x=2x = 2: u=1u = 1.

12xdx92x2=7114duu=1417u1/2du\int_{-1}^2 \frac{x\,dx}{\sqrt{9 - 2x^2}} = \int_7^1 \frac{-\frac{1}{4}du}{\sqrt{u}} = \frac{1}{4}\int_1^7 u^{-1/2}\,du
=142u17=12(71)= \frac{1}{4} \cdot 2\sqrt{u}\Big|_1^7 = \frac{1}{2}(\sqrt{7} - 1)

2. Integration by Parts

Theorem 6.20: Integration by Parts for Definite Integrals

If u,vC1[a,b]u, v \in C^1[a, b], then:

abu(x)v(x)dx=u(x)v(x)ababu(x)v(x)dx\int_a^b u(x)v'(x)\,dx = u(x)v(x)\Big|_a^b - \int_a^b u'(x)v(x)\,dx

Or in differential notation:

abudv=uvababvdu\int_a^b u\,dv = uv\Big|_a^b - \int_a^b v\,du
Proof of Theorem 6.20:

By the product rule: (uv)=uv+uv(uv)' = u'v + uv'.

Integrating both sides from aa to bb:

uvab=abuvdx+abuvdxuv\Big|_a^b = \int_a^b u'v\,dx + \int_a^b uv'\,dx

Rearranging gives the formula.

Example 6.20: Polynomial × Trigonometric

Compute: 0πxsinxdx\int_0^\pi x\sin x\,dx

Solution:

Let u=xu = x, dv=sinxdxdv = \sin x\,dx.

Then du=dxdu = dx, v=cosxv = -\cos x.

0πxsinxdx=xcosx0π+0πcosxdx\int_0^\pi x\sin x\,dx = -x\cos x\Big|_0^\pi + \int_0^\pi \cos x\,dx
=[πcosπ0]+sinx0π=π+0=π= [-\pi\cos\pi - 0] + \sin x\Big|_0^\pi = \pi + 0 = \pi
Example 6.21: Logarithmic Function

Compute: 1exlnxdx\int_1^e x\ln x\,dx

Solution:

Let u=lnxu = \ln x, dv=xdxdv = x\,dx.

Then du=1xdxdu = \frac{1}{x}dx, v=x22v = \frac{x^2}{2}.

1exlnxdx=x22lnx1e1ex221xdx\int_1^e x\ln x\,dx = \frac{x^2}{2}\ln x\Big|_1^e - \int_1^e \frac{x^2}{2} \cdot \frac{1}{x}\,dx
=e2210121exdx=e2212x221e= \frac{e^2}{2} \cdot 1 - 0 - \frac{1}{2}\int_1^e x\,dx = \frac{e^2}{2} - \frac{1}{2} \cdot \frac{x^2}{2}\Big|_1^e
=e2214(e21)=e24+14=e2+14= \frac{e^2}{2} - \frac{1}{4}(e^2 - 1) = \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}
Example 6.22: Higher Powers

Compute: 1ex2(lnx)2dx\int_1^e x^2(\ln x)^2\,dx

Solution:

Let u=(lnx)2u = (\ln x)^2, dv=x2dxdv = x^2\,dx.

Then du=2lnxxdxdu = \frac{2\ln x}{x}dx, v=x33v = \frac{x^3}{3}.

1ex2(lnx)2dx=x33(lnx)21e231ex2lnxdx\int_1^e x^2(\ln x)^2\,dx = \frac{x^3}{3}(\ln x)^2\Big|_1^e - \frac{2}{3}\int_1^e x^2\ln x\,dx

For the remaining integral, use parts again with u=lnxu = \ln x, dv=x2dxdv = x^2\,dx:

1ex2lnxdx=x33lnx1e131ex2dx=e3319(e31)\int_1^e x^2\ln x\,dx = \frac{x^3}{3}\ln x\Big|_1^e - \frac{1}{3}\int_1^e x^2\,dx = \frac{e^3}{3} - \frac{1}{9}(e^3 - 1)
=2e39+19= \frac{2e^3}{9} + \frac{1}{9}

Substituting back:

=e3323(2e39+19)=e334e327227=5e3227= \frac{e^3}{3} - \frac{2}{3}\left(\frac{2e^3}{9} + \frac{1}{9}\right) = \frac{e^3}{3} - \frac{4e^3}{27} - \frac{2}{27} = \frac{5e^3 - 2}{27}
Theorem 6.21: Generalized Integration by Parts

If f,gR[a,b]f, g \in R[a, b] and F(x)=axf(t)dtF(x) = \int_a^x f(t)\,dt, G(x)=axg(t)dtG(x) = \int_a^x g(t)\,dt, then:

abF(x)g(x)dx=F(x)G(x)ababG(x)f(x)dx\int_a^b F(x)g(x)\,dx = F(x)G(x)\Big|_a^b - \int_a^b G(x)f(x)\,dx

This version works even when f,gf, g are only integrable (not necessarily continuous).

3. Symmetry Properties

Definition 6.9: Odd and Even Functions

Even Function

f(x)=f(x)f(-x) = f(x)

Symmetric about the y-axis

Odd Function

f(x)=f(x)f(-x) = -f(x)

Symmetric about the origin

Theorem 6.22: Symmetry Integration Rules

For fC[a,a]f \in C[-a, a]:

If ff is even:

aaf(x)dx=20af(x)dx\int_{-a}^a f(x)\,dx = 2\int_0^a f(x)\,dx

If ff is odd:

aaf(x)dx=0\int_{-a}^a f(x)\,dx = 0
Proof of Theorem 6.22:

Split the integral and substitute u=xu = -x in the left part:

aaf(x)dx=a0f(x)dx+0af(x)dx\int_{-a}^a f(x)\,dx = \int_{-a}^0 f(x)\,dx + \int_0^a f(x)\,dx

For the first integral, let u=xu = -x:

a0f(x)dx=a0f(u)(du)=0af(u)du\int_{-a}^0 f(x)\,dx = \int_a^0 f(-u)(-du) = \int_0^a f(-u)\,du

If ff is even: f(u)=f(u)f(-u) = f(u), so total = 20af(x)dx2\int_0^a f(x)\,dx.

If ff is odd: f(u)=f(u)f(-u) = -f(u), so total = 0.

Example 6.23: Using Symmetry

Compute: 11(x3+x2+x+1)dx\int_{-1}^1 (x^3 + x^2 + x + 1)\,dx

Solution:

Split into odd and even parts:

  • Odd: x3+xx^3 + x → integral = 0
  • Even: x2+1x^2 + 1 → use doubling
11(x3+x2+x+1)dx=0+201(x2+1)dx=2[x33+x]01=243=83\int_{-1}^1 (x^3 + x^2 + x + 1)\,dx = 0 + 2\int_0^1 (x^2 + 1)\,dx = 2\left[\frac{x^3}{3} + x\right]_0^1 = 2 \cdot \frac{4}{3} = \frac{8}{3}
Example 6.24: Hidden Symmetry

Compute: 0π/2sinxsinx+cosxdx\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x}\,dx

Solution:

Let I=0π/2sinxsinx+cosxdxI = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x}\,dx.

Substitute u=π2xu = \frac{\pi}{2} - x:

I=π/20sin(π2u)sin(π2u)+cos(π2u)(du)=0π/2cosucosu+sinuduI = \int_{\pi/2}^0 \frac{\sin(\frac{\pi}{2} - u)}{\sin(\frac{\pi}{2} - u) + \cos(\frac{\pi}{2} - u)}(-du) = \int_0^{\pi/2} \frac{\cos u}{\cos u + \sin u}\,du

Adding the two expressions for II:

2I=0π/2sinx+cosxsinx+cosxdx=0π/21dx=π22I = \int_0^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x}\,dx = \int_0^{\pi/2} 1\,dx = \frac{\pi}{2}

Therefore: I=π4I = \frac{\pi}{4}

Theorem 6.23: King's Property

For fC[a,b]f \in C[a, b]:

abf(x)dx=abf(a+bx)dx\int_a^b f(x)\,dx = \int_a^b f(a + b - x)\,dx

This reflects the interval about its midpoint a+b2\frac{a+b}{2}.

Corollary 6.6: Classic Application

For continuous ff on [0,a][0, a]:

0af(x)f(x)+f(ax)dx=a2\int_0^a \frac{f(x)}{f(x) + f(a-x)}\,dx = \frac{a}{2}
Proof of Corollary 6.6:

Let I=0af(x)f(x)+f(ax)dxI = \int_0^a \frac{f(x)}{f(x) + f(a-x)}\,dx.

Substitute u=axu = a - x:

I=a0f(au)f(au)+f(u)(du)=0af(au)f(au)+f(u)duI = \int_a^0 \frac{f(a-u)}{f(a-u) + f(u)}(-du) = \int_0^a \frac{f(a-u)}{f(a-u) + f(u)}\,du

Adding:

2I=0af(x)+f(ax)f(x)+f(ax)dx=0a1dx=a2I = \int_0^a \frac{f(x) + f(a-x)}{f(x) + f(a-x)}\,dx = \int_0^a 1\,dx = a

4. Periodic Function Integrals

Definition 6.10: Periodic Function

A function ff is periodic with period T>0T > 0 if:

f(x+T)=f(x)for all xf(x + T) = f(x) \quad \text{for all } x
Theorem 6.24: Period Integral Property

If ff is continuous and periodic with period TT, then for any aRa \in \mathbb{R}:

aa+Tf(x)dx=0Tf(x)dx\int_a^{a+T} f(x)\,dx = \int_0^T f(x)\,dx
Proof of Theorem 6.24:
aa+Tf(x)dx=a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx\int_a^{a+T} f(x)\,dx = \int_a^0 f(x)\,dx + \int_0^T f(x)\,dx + \int_T^{a+T} f(x)\,dx

In the last integral, let u=xTu = x - T:

Ta+Tf(x)dx=0af(u+T)du=0af(u)du\int_T^{a+T} f(x)\,dx = \int_0^a f(u+T)\,du = \int_0^a f(u)\,du

So a0+Ta+T=0a+0a=0\int_a^0 + \int_T^{a+T} = -\int_0^a + \int_0^a = 0.

Example 6.25: Periodic Integral

Compute: π3πsin2xdx\int_\pi^{3\pi} \sin^2 x\,dx

Solution:

sin2x\sin^2 x has period π\pi. The interval [π,3π][\pi, 3\pi] spans 2 periods.

π3πsin2xdx=20πsin2xdx=2π2=π\int_\pi^{3\pi} \sin^2 x\,dx = 2\int_0^\pi \sin^2 x\,dx = 2 \cdot \frac{\pi}{2} = \pi

5. The Wallis Formula

Definition 6.11: Wallis Integral

Define the Wallis integral:

In=0π/2sinnxdx=0π/2cosnxdxI_n = \int_0^{\pi/2} \sin^n x\,dx = \int_0^{\pi/2} \cos^n x\,dx
Theorem 6.25: Wallis Reduction Formula

For n2n \geq 2:

In=n1nIn2I_n = \frac{n-1}{n} I_{n-2}
Proof of Theorem 6.25:

Use integration by parts with u=sinn1xu = \sin^{n-1}x, dv=sinxdxdv = \sin x\,dx:

In=0π/2sinn1xsinxdx=sinn1xcosx0π/2+(n1)0π/2sinn2xcos2xdxI_n = \int_0^{\pi/2} \sin^{n-1}x \cdot \sin x\,dx = -\sin^{n-1}x\cos x\Big|_0^{\pi/2} + (n-1)\int_0^{\pi/2} \sin^{n-2}x \cos^2 x\,dx

The boundary term is 0. Using cos2x=1sin2x\cos^2 x = 1 - \sin^2 x:

In=(n1)0π/2sinn2x(1sin2x)dx=(n1)In2(n1)InI_n = (n-1)\int_0^{\pi/2} \sin^{n-2}x(1 - \sin^2 x)\,dx = (n-1)I_{n-2} - (n-1)I_n

Solving for InI_n: nIn=(n1)In2nI_n = (n-1)I_{n-2}.

Corollary 6.7: Explicit Formulas

With I0=π2I_0 = \frac{\pi}{2} and I1=1I_1 = 1:

Even index:

I2n=(2n1)!!(2n)!!π2I_{2n} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}

Odd index:

I2n+1=(2n)!!(2n+1)!!I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}

Here n!!=n(n2)(n4)n!! = n(n-2)(n-4)\cdots is the double factorial.

Example 6.26: Computing Wallis Integrals

Compute: I4I_4 and I5I_5

Solution:

For I4I_4:

I4=34I2=3412I0=3412π2=3π16I_4 = \frac{3}{4}I_2 = \frac{3}{4} \cdot \frac{1}{2}I_0 = \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3\pi}{16}

For I5I_5:

I5=45I3=4523I1=45231=815I_5 = \frac{4}{5}I_3 = \frac{4}{5} \cdot \frac{2}{3}I_1 = \frac{4}{5} \cdot \frac{2}{3} \cdot 1 = \frac{8}{15}
Theorem 6.26: Wallis Product for π

The Wallis formula gives a remarkable product representation:

π2=limn(2n)!!2(2n1)!!2(2n+1)=k=14k24k21\frac{\pi}{2} = \lim_{n \to \infty} \frac{(2n)!!^2}{(2n-1)!!^2(2n+1)} = \prod_{k=1}^\infty \frac{4k^2}{4k^2 - 1}
Proof of Theorem 6.26:

For x(0,π/2)x \in (0, \pi/2): sin2n+1x<sin2nx<sin2n1x\sin^{2n+1}x < \sin^{2n}x < \sin^{2n-1}x.

Integrating: I2n+1<I2n<I2n1I_{2n+1} < I_{2n} < I_{2n-1}.

1<I2nI2n+1<I2n1I2n+1=2n+12n11 < \frac{I_{2n}}{I_{2n+1}} < \frac{I_{2n-1}}{I_{2n+1}} = \frac{2n+1}{2n} \to 1

By squeeze theorem, I2nI2n+11\frac{I_{2n}}{I_{2n+1}} \to 1. Expanding:

I2nI2n+1=(2n1)!!(2n)!!π2(2n+1)!!(2n)!!1\frac{I_{2n}}{I_{2n+1}} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} \cdot \frac{(2n+1)!!}{(2n)!!} \to 1

Rearranging gives the Wallis product.

6. Stirling's Approximation

Theorem 6.27: Stirling's Formula

As nn \to \infty:

n!2πn(ne)nn! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n

More precisely: n!=2πn(ne)neθn/(12n)n! = \sqrt{2\pi n}\left(\frac{n}{e}\right)^n e^{\theta_n/(12n)} where 0<θn<10 < \theta_n < 1.

Proof of Theorem 6.27 (Sketch):

Define an=n!ennn+1/2a_n = \frac{n! e^n}{n^{n+1/2}}. We show an2πa_n \to \sqrt{2\pi}.

Step 1: Show {an}\{a_n\} is decreasing and bounded below.

anan+1=1e(1+1n)n+1/2\frac{a_n}{a_{n+1}} = \frac{1}{e}\left(1 + \frac{1}{n}\right)^{n+1/2}

Using Hadamard's inequality: 1anan+1e1/(4n(n+1))1 \leq \frac{a_n}{a_{n+1}} \leq e^{1/(4n(n+1))}.

Step 2: Let α=liman\alpha = \lim a_n. Show α>0\alpha > 0.

Step 3: Use Wallis formula to find α=2π\alpha = \sqrt{2\pi}:

π=limn(2n)!!(2n1)!!n=limn(n!)222n(2n)!n=α2α2\sqrt{\pi} = \lim_{n\to\infty} \frac{(2n)!!}{(2n-1)!!\sqrt{n}} = \lim_{n\to\infty} \frac{(n!)^2 2^{2n}}{(2n)!\sqrt{n}} = \frac{\alpha^2}{\alpha\sqrt{2}}

Solving: α=2π\alpha = \sqrt{2\pi}.

Example 6.27: Using Stirling's Formula

Estimate: 10!10!

Solution:

10!2π10(10e)1062.833.6791010! \approx \sqrt{2\pi \cdot 10} \cdot \left(\frac{10}{e}\right)^{10} \approx \sqrt{62.83} \cdot 3.679^{10}
7.926×453,9993,598,696\approx 7.926 \times 453,999 \approx 3,598,696

Exact value: 10!=3,628,80010! = 3,628,800. Error ≈ 0.8%.

Remark 6.8: Applications of Stirling

Combinatorics

Estimate binomial coefficients, counting problems

Probability

Central limit theorem, random walks

Statistical Mechanics

Entropy calculations, partition functions

Algorithm Analysis

Complexity of sorting, permutation algorithms

7. Advanced Integration Techniques

Example 6.28: Taylor Formula via Integration

Derive: Taylor's formula with integral remainder using integration by parts.

Derivation:

Start with f(x)f(x0)=x0xf(t)dtf(x) - f(x_0) = \int_{x_0}^x f'(t)\,dt.

Use parts with u=f(t)u = f'(t), dv=dt=d(tx)dv = dt = d(t-x):

=f(t)(tx)x0xx0xf(t)(tx)dt= f'(t)(t-x)\Big|_{x_0}^x - \int_{x_0}^x f''(t)(t-x)\,dt
=f(x0)(xx0)+x0xf(t)(xt)dt= f'(x_0)(x-x_0) + \int_{x_0}^x f''(t)(x-t)\,dt

Continuing this process nn times:

f(x)=k=0nf(k)(x0)k!(xx0)k+1n!x0xf(n+1)(t)(xt)ndtf(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + \frac{1}{n!}\int_{x_0}^x f^{(n+1)}(t)(x-t)^n\,dt
Example 6.29: Dirichlet Integral (Preview)

Famous result:

0sinxxdx=π2\int_0^\infty \frac{\sin x}{x}\,dx = \frac{\pi}{2}

This is an improper integral (covered in Chapter 7). The proof uses clever techniques including Laplace transforms or Feynman's differentiation under the integral.

Example 6.30: Iterated Integral

Prove: ax(atf(u)du)dt=ax(xt)f(t)dt\int_a^x \left(\int_a^t f(u)\,du\right)dt = \int_a^x (x-t)f(t)\,dt

Proof:

Let F(t)=atf(u)duF(t) = \int_a^t f(u)\,du. Use parts with u=F(t)u = F(t), dv=dtdv = dt:

axF(t)dt=axF(t)d(ta)=F(t)(ta)axax(ta)f(t)dt\int_a^x F(t)\,dt = \int_a^x F(t)\,d(t-a) = F(t)(t-a)\Big|_a^x - \int_a^x (t-a)f(t)\,dt

Actually, use dv=d(tx)dv = d(t-x) instead:

=F(t)(tx)axax(tx)f(t)dt=0+ax(xt)f(t)dt= F(t)(t-x)\Big|_a^x - \int_a^x (t-x)f(t)\,dt = 0 + \int_a^x (x-t)f(t)\,dt
Example 6.31: Logarithmic Integral

Compute: 0π/2ln(sinx)dx\int_0^{\pi/2} \ln(\sin x)\,dx

Solution:

Let I=0π/2ln(sinx)dxI = \int_0^{\pi/2} \ln(\sin x)\,dx. By symmetry with u=π/2xu = \pi/2 - x:

I=0π/2ln(cosx)dxI = \int_0^{\pi/2} \ln(\cos x)\,dx

Adding:

2I=0π/2ln(sinxcosx)dx=0π/2ln(sin2x2)dx2I = \int_0^{\pi/2} \ln(\sin x \cos x)\,dx = \int_0^{\pi/2} \ln\left(\frac{\sin 2x}{2}\right)dx
=0π/2ln(sin2x)dxπ2ln2= \int_0^{\pi/2} \ln(\sin 2x)\,dx - \frac{\pi}{2}\ln 2

Let t=2xt = 2x in the first integral:

0π/2ln(sin2x)dx=120πln(sint)dt=122I=I\int_0^{\pi/2} \ln(\sin 2x)\,dx = \frac{1}{2}\int_0^\pi \ln(\sin t)\,dt = \frac{1}{2} \cdot 2I = I

So: 2I=Iπ2ln22I = I - \frac{\pi}{2}\ln 2, giving I=π2ln2I = -\frac{\pi}{2}\ln 2.

Example 6.32: Reduction Formula Application

Compute: 0πx2sinxdx\int_0^{\pi} x^2\sin x\,dx

Solution:

Use parts twice. Let u=x2u = x^2, dv=sinxdxdv = \sin x\,dx:

0πx2sinxdx=x2cosx0π+20πxcosxdx\int_0^{\pi} x^2\sin x\,dx = -x^2\cos x\Big|_0^\pi + 2\int_0^\pi x\cos x\,dx
=π2+2[xsinx0π0πsinxdx]= \pi^2 + 2\left[x\sin x\Big|_0^\pi - \int_0^\pi \sin x\,dx\right]
=π2+2[0+cosx0π]=π2+2(11)=π24= \pi^2 + 2\left[0 + \cos x\Big|_0^\pi\right] = \pi^2 + 2(-1-1) = \pi^2 - 4
Example 6.33: Gamma Function Preview

The Gamma Function:

Γ(n)=0xn1exdx=(n1)!\Gamma(n) = \int_0^\infty x^{n-1}e^{-x}\,dx = (n-1)!

For positive integers, this equals the factorial. The Gamma function extends factorials to all complex numbers (except non-positive integers). The key property is Γ(n+1)=nΓ(n)\Gamma(n+1) = n\Gamma(n).

Example 6.34: Beta Function Preview

The Beta Function:

B(m,n)=01xm1(1x)n1dx=Γ(m)Γ(n)Γ(m+n)B(m, n) = \int_0^1 x^{m-1}(1-x)^{n-1}\,dx = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}

Special case: B(1/2,1/2)=πB(1/2, 1/2) = \pi. The Wallis integral InI_n can be expressed using Beta functions.

Example 6.35: Fresnel Integrals

Fresnel Integrals:

C(x)=0xcos(πt22)dtC(x) = \int_0^x \cos\left(\frac{\pi t^2}{2}\right)dt
S(x)=0xsin(πt22)dtS(x) = \int_0^x \sin\left(\frac{\pi t^2}{2}\right)dt

These integrals arise in optics (diffraction patterns) and have the remarkable limits:C()=S()=12C(\infty) = S(\infty) = \frac{1}{2}

8. Practice Problems

Problem Set A: Basic Techniques

1. 04x1+2xdx\int_0^4 \frac{x}{\sqrt{1+2x}}\,dx

2. 0π/4tan4xdx\int_0^{\pi/4} \tan^4 x\,dx

3. 01xarctanxdx\int_0^1 x\arctan x\,dx

4. 1elnxx2dx\int_1^e \frac{\ln x}{x^2}\,dx

5. 0πxcos2xdx\int_0^{\pi} x\cos^2 x\,dx

6. 01x2exdx\int_0^1 x^2 e^{-x}\,dx

Problem Set B: Symmetry Tricks

7. ππxsinx1+cos2xdx\int_{-\pi}^{\pi} \frac{x\sin x}{1+\cos^2 x}\,dx

8. 0π/2cos3xsin3x+cos3xdx\int_0^{\pi/2} \frac{\cos^3 x}{\sin^3 x + \cos^3 x}\,dx

9. 01ln(1+x)1+x2dx\int_0^1 \frac{\ln(1+x)}{1+x^2}\,dx

10. 0πxsinx1+cos2xdx\int_0^\pi \frac{x\sin x}{1+\cos^2 x}\,dx

Problem Set C: Wallis-Type Integrals

11. 0π/2sin6xdx\int_0^{\pi/2} \sin^6 x\,dx

12. 0π/2sin3xcos4xdx\int_0^{\pi/2} \sin^3 x \cos^4 x\,dx

13. 0π/2sin2xcos4xdx\int_0^{\pi/2} \sin^2 x \cos^4 x\,dx

14. 0πsin5xdx\int_0^\pi \sin^5 x\,dx

Problem Set D: Challenge Problems

15. limn01nxn11+xdx\lim_{n\to\infty} \int_0^1 \frac{nx^{n-1}}{1+x}\,dx

16. 0π/4ln(1+tanx)dx\int_0^{\pi/4} \ln(1+\tan x)\,dx

17. Prove I2nI2n+1=π2(2n+1)I_{2n}I_{2n+1} = \frac{\pi}{2(2n+1)}

18. 01lnx1x2dx\int_0^1 \frac{\ln x}{1-x^2}\,dx

Remark 6.9: Answers to Selected Problems
1: 269\frac{26}{9}
3: π412\frac{\pi}{4} - \frac{1}{2}
8: π4\frac{\pi}{4}
10: π24\frac{\pi^2}{4}
11: 5π32\frac{5\pi}{32}
12: 235\frac{2}{35}
14: 1615\frac{16}{15}
16: πln28\frac{\pi\ln 2}{8}

9. Formula Summary

TechniqueFormulaWhen to Use
Substitutionabf(ϕ(t))ϕ(t)dt\int_a^b f(\phi(t))\phi'(t)\,dtComposite functions, radicals
Partsudv=uvabvdu\int u\,dv = uv|_a^b - \int v\,duProducts of different types
Even symmetryaaf=20af\int_{-a}^a f = 2\int_0^a ff(x)=f(x)f(-x) = f(x)
Odd symmetryaaf=0\int_{-a}^a f = 0f(x)=f(x)f(-x) = -f(x)
King's propertyabf(x)=abf(a+bx)\int_a^b f(x) = \int_a^b f(a+b-x)Midpoint reflection
Periodicaa+Tf=0Tf\int_a^{a+T} f = \int_0^T fPeriod TT
WallisIn=n1nIn2I_n = \frac{n-1}{n}I_{n-2}sinnx,cosnx\sin^n x, \cos^n x
Stirlingn!2πn(n/e)nn! \sim \sqrt{2\pi n}(n/e)^nLarge factorials

10. Common Mistakes to Avoid

❌ Forgetting to change limits

When substituting, ALWAYS update the limits of integration!

❌ Wrong boundary in parts

Don't forget to evaluate uvabuv|_a^b at BOTH limits!

❌ Misidentifying odd/even

ex2e^{-x^2} is even, but xex2xe^{-x^2} is odd!

❌ Wrong Wallis recursion

It's In=n1nIn2I_n = \frac{n-1}{n}I_{n-2}, not nn1\frac{n}{n-1}!

❌ Ignoring domain issues

Check that substitutions are valid on the integration interval!

❌ Sign errors in symmetry

When u=xu = -x, don't forget du=dxdu = -dx!

11. Historical Notes

John Wallis (1616-1703)

English mathematician who discovered the product formula for π in 1656. His work “Arithmetica Infinitorum” influenced Newton's development of calculus.

π2=212343456567\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots

James Stirling (1692-1770)

Scottish mathematician who refined the factorial approximation. Though de Moivre found it first, Stirling determined the constant 2π\sqrt{2\pi}.

n!2πn(ne)nn! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n

Augustin-Louis Cauchy (1789-1857)

French mathematician who rigorized calculus. The Cauchy-Schwarz inequality he proved is fundamental in analysis, probability, and physics.

(fg)2f2g2\left(\int fg\right)^2 \leq \int f^2 \cdot \int g^2

Leonhard Euler (1707-1783)

Swiss mathematician who discovered countless integral formulas and introduced the Gamma function, extending factorials to non-integers.

Γ(n)=(n1)!=0xn1exdx\Gamma(n) = (n-1)! = \int_0^\infty x^{n-1}e^{-x}\,dx

12. Connections to Other Topics

Probability Theory

The Gaussian integral ex2dx=π\int e^{-x^2}dx = \sqrt{\pi} is the foundation of the normal distribution in statistics.

Fourier Analysis

Wallis integrals appear in computing Fourier coefficients of periodic functions, essential for signal processing.

Physics

Stirling's formula is crucial in statistical mechanics for calculating entropy and partition functions.

Complex Analysis

Many definite integrals are evaluated using contour integration in the complex plane, a powerful technique from complex analysis.

Number Theory

The Riemann zeta function ζ(s)=ns\zeta(s) = \sum n^{-s} connects to integrals and the distribution of prime numbers.

Numerical Methods

Understanding exact integration helps design and analyze numerical integration methods like Simpson's rule and Gaussian quadrature.

Computation Techniques Quiz
10
Questions
0
Correct
0%
Accuracy
1
For abf(x)dx\int_a^b f(x)\,dx with substitution x=ϕ(t)x = \phi(t), the new limits are:
Easy
Not attempted
2
For odd function ff on [a,a][-a, a], aaf(x)dx\int_{-a}^a f(x)\,dx equals:
Easy
Not attempted
3
For even function ff on [a,a][-a, a], aaf(x)dx\int_{-a}^a f(x)\,dx equals:
Easy
Not attempted
4
The Wallis formula gives In=0π/2sinnxdxI_n = \int_0^{\pi/2} \sin^n x\,dx as:
Medium
Not attempted
5
0π/2sin4xdx\int_0^{\pi/2} \sin^4 x\,dx equals:
Medium
Not attempted
6
Stirling's approximation states n!n! \sim:
Medium
Not attempted
7
0af(x)f(x)+f(ax)dx\int_0^a \frac{f(x)}{f(x) + f(a-x)}\,dx equals:
Hard
Not attempted
8
For periodic ff with period TT, aa+Tf(x)dx\int_a^{a+T} f(x)\,dx:
Medium
Not attempted
9
0πxsinxdx\int_0^\pi x\sin x\,dx using parts gives:
Medium
Not attempted
10
The integral 0π/2ln(sinx)dx\int_0^{\pi/2} \ln(\sin x)\,dx equals:
Hard
Not attempted

Frequently Asked Questions

When should I use substitution vs. parts?

Use substitution when you see a composite function f(g(x))g'(x). Use parts when you have a product of different function types (polynomial × exponential, polynomial × trig, etc.).

How do I change limits in substitution?

If x = φ(t), when x = a find t = φ⁻¹(a), and when x = b find t = φ⁻¹(b). These become your new limits.

Why does the odd function integral vanish?

Geometrically, the negative area on [-a, 0] exactly cancels the positive area on [0, a] due to point symmetry about the origin.

What makes Wallis formula so useful?

It reduces powers of sin/cos to simpler integrals via recursion, and leads to remarkable results like the Wallis product for π.

How accurate is Stirling's approximation?

The relative error is about 1/(12n), so for n = 10 it's ~1% accurate, for n = 100 it's ~0.1% accurate.

What's the trick for ∫f(x)/(f(x)+f(a-x))?

Substitute u = a - x to get an equivalent integral, then add both versions. The sum simplifies to the integral of 1, giving a/2.

Key Takeaways

Substitution

Change limits when substituting!

x=ϕ(t)new limitsx = \phi(t) \Rightarrow \text{new limits}

Parts Formula

udv=uvabvdu\int u\,dv = uv|_a^b - \int v\,du

Odd Function

aafodd=0\int_{-a}^a f_{\text{odd}} = 0

Even Function

aafeven=20af\int_{-a}^a f_{\text{even}} = 2\int_0^a f

King's Property

abf(x)=abf(a+bx)\int_a^b f(x) = \int_a^b f(a+b-x)

Wallis Reduction

In=n1nIn2I_n = \frac{n-1}{n}I_{n-2}

Periodic

aa+Tf=0Tf\int_a^{a+T} f = \int_0^T f

Stirling

n!2πn(n/e)nn! \sim \sqrt{2\pi n}(n/e)^n

Classic Trick

0aff+f(ax)=a2\int_0^a \frac{f}{f+f(a-x)} = \frac{a}{2}

Quick Reference Tips

Trigonometric Powers

For sinmxcosnxdx\int \sin^m x \cos^n x\,dx:

  • If mm odd: save one sinx\sin x, use sin2=1cos2\sin^2 = 1 - \cos^2
  • If nn odd: save one cosx\cos x, use cos2=1sin2\cos^2 = 1 - \sin^2
  • If both even: use half-angle formulas

Substitution Hints

Common substitutions:

  • a2x2\sqrt{a^2-x^2}: x=asinθx = a\sin\theta
  • a2+x2\sqrt{a^2+x^2}: x=atanθx = a\tan\theta
  • x2a2\sqrt{x^2-a^2}: x=asecθx = a\sec\theta

Parts Strategy (LIATE)

Choose uu in this order:

  • Logarithmic: lnx,logx\ln x, \log x
  • Inverse trig: arcsin,arctan\arcsin, \arctan
  • Algebraic: xn,x2+1x^n, x^2+1
  • Trigonometric: sin,cos\sin, \cos
  • Exponential: ex,2xe^x, 2^x