MathIsimple
π
θ
Δ
ε
Home/Calculus/Chapter 6/Properties of Definite Integrals
CALC-6.2
3-4 hours

Properties of Definite Integrals

Master the fundamental properties that make definite integrals a powerful tool: linearity, comparison, interval additivity, and more.

Learning Objectives
Prove linearity of the definite integral
Establish interval additivity property
Apply comparison theorems and estimation
Prove absolute value integrability
Understand product integrability
Apply Cauchy-Schwarz inequality for integrals

1. Linearity

Theorem 6.9: Linearity of Definite Integrals

If f,gR[a,b]f, g \in R[a, b] and α,βR\alpha, \beta \in \mathbb{R}, then αf+βgR[a,b]\alpha f + \beta g \in R[a, b] and:

ab[αf(x)+βg(x)]dx=αabf(x)dx+βabg(x)dx\int_a^b [\alpha f(x) + \beta g(x)]\,dx = \alpha \int_a^b f(x)\,dx + \beta \int_a^b g(x)\,dx
Proof of Theorem 6.9:

For any partition Δ\Delta and sample points {ξ}\{\xi\}:

SΔ(αf+βg,ξ)=k=1n[αf(ξk)+βg(ξk)]ΔxkS_\Delta(\alpha f + \beta g, \xi) = \sum_{k=1}^n [\alpha f(\xi_k) + \beta g(\xi_k)]\Delta x_k
=αk=1nf(ξk)Δxk+βk=1ng(ξk)Δxk=αSΔ(f,ξ)+βSΔ(g,ξ)= \alpha \sum_{k=1}^n f(\xi_k)\Delta x_k + \beta \sum_{k=1}^n g(\xi_k)\Delta x_k = \alpha S_\Delta(f, \xi) + \beta S_\Delta(g, \xi)

Taking Δ0\|\Delta\| \to 0 gives the result.

Example 6.7: Using Linearity

Compute: 01(3x22x+5)dx\int_0^1 (3x^2 - 2x + 5)\,dx

=301x2dx201xdx+5011dx= 3\int_0^1 x^2\,dx - 2\int_0^1 x\,dx + 5\int_0^1 1\,dx
=313212+51=11+5=5= 3 \cdot \frac{1}{3} - 2 \cdot \frac{1}{2} + 5 \cdot 1 = 1 - 1 + 5 = 5

2. Comparison Theorems

Theorem 6.10: Order Preservation

If f,gR[a,b]f, g \in R[a, b] and f(x)g(x)f(x) \leq g(x) for all x[a,b]x \in [a, b], then:

abf(x)dxabg(x)dx\int_a^b f(x)\,dx \leq \int_a^b g(x)\,dx
Corollary 6.2: Non-negativity

If fR[a,b]f \in R[a, b] and f(x)0f(x) \geq 0 on [a,b][a, b], then:

abf(x)dx0\int_a^b f(x)\,dx \geq 0
Corollary 6.3: Estimation Theorem

If mf(x)Mm \leq f(x) \leq M on [a,b][a, b], then:

m(ba)abf(x)dxM(ba)m(b-a) \leq \int_a^b f(x)\,dx \leq M(b-a)
Example 6.8: Estimating an Integral

Estimate: 011+x3dx\int_0^1 \sqrt{1 + x^3}\,dx

On [0,1][0, 1]: 0x310 \leq x^3 \leq 1, so 11+x321 \leq 1 + x^3 \leq 2.

Thus 11+x321 \leq \sqrt{1 + x^3} \leq \sqrt{2}.

11011+x3dx211 \cdot 1 \leq \int_0^1 \sqrt{1 + x^3}\,dx \leq \sqrt{2} \cdot 1

Result: 1I21.4141 \leq I \leq \sqrt{2} \approx 1.414

3. Interval Additivity

Theorem 6.11: Interval Additivity

For a<c<ba < c < b:

fR[a,b]fR[a,c]R[c,b]f \in R[a, b] \Leftrightarrow f \in R[a, c] \cap R[c, b]

In this case:

abf(x)dx=acf(x)dx+cbf(x)dx\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx
Remark 6.3

This property extends to any finite number of subintervals. Combined with our conventions, it holds for any ordering of a,b,ca, b, c.

4. Absolute Value Integrability

Theorem 6.12: Absolute Value Integrability

If fR[a,b]f \in R[a, b], then fR[a,b]|f| \in R[a, b], and:

abf(x)dxabf(x)dx\left| \int_a^b f(x)\,dx \right| \leq \int_a^b |f(x)|\,dx
Proof of Theorem 6.12:

For integrability of f|f|: Since f(x)f(y)f(x)f(y)||f(x)| - |f(y)|| \leq |f(x) - f(y)|, the oscillation of f|f| on any interval is ≤ that of ff.

For the inequality: fff-|f| \leq f \leq |f| implies fff-\int|f| \leq \int f \leq \int|f|.

Remark 6.4: Converse is False

Warning: fR[a,b]|f| \in R[a,b] does NOT imply fR[a,b]f \in R[a,b]!

Example: f(x)=1f(x) = 1 if xQx \in \mathbb{Q}, f(x)=1f(x) = -1 if xQx \notin \mathbb{Q}.

Then f1|f| \equiv 1 is integrable, but ff is not.

5. Product and Special Inequalities

Theorem 6.13: Product Integrability

If f,gR[a,b]f, g \in R[a, b], then fgR[a,b]f \cdot g \in R[a, b].

Theorem 6.14: Cauchy-Schwarz Inequality

For f,gR[a,b]f, g \in R[a, b]:

(abf(x)g(x)dx)2abf2(x)dxabg2(x)dx\left( \int_a^b |f(x)g(x)|\,dx \right)^2 \leq \int_a^b f^2(x)\,dx \cdot \int_a^b g^2(x)\,dx
Example 6.9: Applying Cauchy-Schwarz

Prove: (01xdx)201xdx011dx\left(\int_0^1 \sqrt{x}\,dx\right)^2 \leq \int_0^1 x\,dx \cdot \int_0^1 1\,dx

Taking f(x)=xf(x) = \sqrt{x}, g(x)=1g(x) = 1:

(23)2121\left(\frac{2}{3}\right)^2 \leq \frac{1}{2} \cdot 1
4912\frac{4}{9} \leq \frac{1}{2} \quad \checkmark
Theorem 6.15: Riemann-Lebesgue Lemma

If fR[a,b]f \in R[a, b], then:

limλ+abf(x)sin(λx)dx=0\lim_{\lambda \to +\infty} \int_a^b f(x) \sin(\lambda x)\,dx = 0

Similarly for cos(λx)\cos(\lambda x). This is fundamental in Fourier analysis.

6. Important Examples

Example 6.10: Integral Inequality

Problem: If fC[0,a]f \in C[0, a], f(0)=0f(0) = 0, and f(x)Mf'(x) \leq M, prove 0af(x)dxMa22\int_0^a f(x)\,dx \leq \frac{Ma^2}{2}.

Solution:

By the Mean Value Theorem: f(x)=f(x)f(0)=f(ξ)xMxf(x) = f(x) - f(0) = f'(\xi)x \leq Mx

0af(x)dx0aMxdx=Ma22\int_0^a f(x)\,dx \leq \int_0^a Mx\,dx = M \cdot \frac{a^2}{2}
Example 6.11: Zero Integral Implies Zero Function

Theorem: If fC[a,b]f \in C[a, b], f(x)0f(x) \geq 0, and abf(x)dx=0\int_a^b f(x)\,dx = 0, then f0f \equiv 0.

Proof:

Suppose f(x0)>0f(x_0) > 0 for some x0x_0. By continuity, f(x)>f(x0)2f(x) > \frac{f(x_0)}{2} on some [x0δ,x0+δ][x_0-\delta, x_0+\delta].

abfx0δx0+δf>f(x0)22δ>0\int_a^b f \geq \int_{x_0-\delta}^{x_0+\delta} f > \frac{f(x_0)}{2} \cdot 2\delta > 0

Contradiction! So f0f \equiv 0.

7. Additional Examples

Example 6.12: Integral of Odd Function over Symmetric Interval

Theorem: If ff is odd (f(x)=f(x)f(-x) = -f(x)) and integrable on [a,a][-a, a], then:

aaf(x)dx=0\int_{-a}^a f(x)\,dx = 0

Proof:

By interval additivity and substitution u=xu = -x:

a0f(x)dx=a0f(u)du=0af(u)du=0af(u)du\int_{-a}^0 f(x)\,dx = -\int_a^0 f(-u)\,du = \int_0^a f(-u)\,du = -\int_0^a f(u)\,du

Thus aaf=a0f+0af=0af+0af=0\int_{-a}^a f = \int_{-a}^0 f + \int_0^a f = -\int_0^a f + \int_0^a f = 0.

Example 6.13: Integral of Even Function

Theorem: If ff is even (f(x)=f(x)f(-x) = f(x)) and integrable on [a,a][-a, a], then:

aaf(x)dx=20af(x)dx\int_{-a}^a f(x)\,dx = 2\int_0^a f(x)\,dx

This often simplifies computation of integrals over symmetric intervals.

Example 6.14: Applying Symmetry

Compute: 11(x3+2x2+3x+4)dx\int_{-1}^1 (x^3 + 2x^2 + 3x + 4)\,dx

Solution:

Split into odd and even parts:

  • x3x^3 and 3x3x are odd → contribute 0
  • 2x22x^2 and 44 are even → double the integral on [0,1][0,1]
=201(2x2+4)dx=2[2x33+4x]01=2(23+4)=283= 2\int_0^1 (2x^2 + 4)\,dx = 2\left[\frac{2x^3}{3} + 4x\right]_0^1 = 2\left(\frac{2}{3} + 4\right) = \frac{28}{3}
Example 6.15: Squeeze Theorem for Integrals

Problem: Evaluate limn01xn1+xdx\lim_{n \to \infty} \int_0^1 \frac{x^n}{1+x}\,dx.

Solution:

On [0,1][0, 1]: 0xn1+xxn1=xn0 \leq \frac{x^n}{1+x} \leq \frac{x^n}{1} = x^n.

By comparison:

001xn1+xdx01xndx=1n+100 \leq \int_0^1 \frac{x^n}{1+x}\,dx \leq \int_0^1 x^n\,dx = \frac{1}{n+1} \to 0

Answer: The limit is 00.

Example 6.16: Using Comparison to Evaluate Limits

Problem: Find limn0π/2sinnxdx\lim_{n \to \infty} \int_0^{\pi/2} \sin^n x\,dx.

Solution:

For x(0,π/2)x \in (0, \pi/2): 0<sinx<10 < \sin x < 1, so sinnx0\sin^n x \to 0 pointwise.

Moreover, 0sinnx10 \leq \sin^n x \leq 1, and by dominated convergence (or direct estimation):

0π/2sinnxdx0δ1dx+δπ/2sinnδdx0\int_0^{\pi/2} \sin^n x\,dx \leq \int_0^{\delta} 1\,dx + \int_\delta^{\pi/2} \sin^n \delta\,dx \to 0

Answer: The limit is 00.

8. Practice Problems

Problem Set A: Linearity and Comparison

  1. 1.Compute 22(5x43x3+x2x+2)dx\int_{-2}^2 (5x^4 - 3x^3 + x^2 - x + 2)\,dx using symmetry.
  2. 2.Show that 0π/2sinxdxπ2\int_0^{\pi/2} \sin x\,dx \leq \frac{\pi}{2}.
  3. 3.Prove: π60π/4dxcosxπ4cos(π/4)\frac{\pi}{6} \leq \int_0^{\pi/4} \frac{dx}{\cos x} \leq \frac{\pi}{4\cos(\pi/4)}.
  4. 4.If fC[0,1]f \in C[0, 1] and 01xnf(x)dx=0\int_0^1 x^n f(x)\,dx = 0 for all n0n \geq 0, prove f0f \equiv 0.

Problem Set B: Absolute Value and Products

  1. 5.Show: 0πsinxcos(nx)dx2n21\left|\int_0^\pi \sin x \cos(nx)\,dx\right| \leq \frac{2}{n^2-1} for n>1n > 1.
  2. 6.Use Cauchy-Schwarz to prove (abf)2(ba)abf2\left(\int_a^b f\right)^2 \leq (b-a)\int_a^b f^2.
  3. 7.Show that 01x1xdx14\int_0^1 \sqrt{x}\sqrt{1-x}\,dx \leq \frac{1}{4}.
  4. 8.Prove the Hölder inequality: fg(fp)1/p(gq)1/q\int|fg| \leq (\int|f|^p)^{1/p}(\int|g|^q)^{1/q} where 1/p+1/q=11/p + 1/q = 1.

Problem Set C: Applications

  1. 9.Prove: 01x1001+xdx<0.01\int_0^1 \frac{x^{100}}{1+x}\,dx < 0.01.
  2. 10.Show: 0.4<0111+x4dx<10.4 < \int_0^1 \frac{1}{\sqrt{1+x^4}}\,dx < 1.
  3. 11.Evaluate limn01nxenx2dx\lim_{n \to \infty} \int_0^1 nx e^{-nx^2}\,dx.
  4. 12.If fC[a,b]f \in C[a,b] with abf=0\int_a^b f = 0, show ff has a zero in (a,b)(a,b) (unless f0f \equiv 0).
Remark 6.5: Answers to Selected Problems

Problem 1: 2(5325+83+4)=296152(5 \cdot \frac{32}{5} + \frac{8}{3} + 4) = \frac{296}{15}

Problem 9: Use x100<x100<1101x^{100} < x^{100} < \frac{1}{101}

Problem 11: 12\frac{1}{2}

Problem 12: By IVT, ff takes positive and negative values

9. Deeper Insights

Why These Properties Matter

Linearity

Linearity makes the integral a linear functional, connecting calculus to linear algebra and functional analysis. This is the foundation of Fourier analysis and quantum mechanics.

Comparison

Comparison theorems let us bound integrals we cannot compute exactly. This is crucial in convergence tests for improper integrals and series.

Absolute Value

The triangle inequality ff|\int f| \leq \int|f| is essential for proving convergence of integral series and for error estimates in numerical integration.

Cauchy-Schwarz

This inequality defines an inner product on L2L^2 functions, making them a Hilbert space. This structure underlies quantum mechanics and signal processing.

Theorem 6.16: Minkowski's Inequality

For f,gR[a,b]f, g \in R[a, b] and p1p \geq 1:

(abf+gp)1/p(abfp)1/p+(abgp)1/p\left(\int_a^b |f+g|^p\right)^{1/p} \leq \left(\int_a^b |f|^p\right)^{1/p} + \left(\int_a^b |g|^p\right)^{1/p}

This is the triangle inequality in LpL^p space.

Remark 6.6: Connection to Norms

The integral defines various norms on function spaces:

L1L^1 norm

f1=f\|f\|_1 = \int|f|

L2L^2 norm

f2=f2\|f\|_2 = \sqrt{\int f^2}

LL^\infty norm

f=supf\|f\|_\infty = \sup|f|

10. Historical Context

Augustin-Louis Cauchy (1789-1857)

First proved the comparison theorem rigorously. His work on complex analysis also used these properties to develop contour integration.

Hermann Schwarz (1843-1921)

Along with Cauchy, developed the Cauchy-Schwarz inequality, now fundamental to inner product spaces and quantum mechanics.

Hermann Minkowski (1864-1909)

Developed the Minkowski inequality and the geometry of numbers. His work connected integration theory to convex geometry.

11. Common Mistakes

❌ Wrong direction in triangle inequality

ff|\int f| \leq \int|f|, NOT ff|\int f| \geq \int|f|!

❌ Assuming f|f| integrable implies ff integrable

The converse is true! fRfRf \in R \Rightarrow |f| \in R.

❌ Forgetting (ba)(b-a) in estimation

If mfMm \leq f \leq M, then m(ba)fM(ba)m(b-a) \leq \int f \leq M(b-a).

❌ Misusing Cauchy-Schwarz

Remember: (fg)2(f2)(g2)(\int fg)^2 \leq (\int f^2)(\int g^2), not fg\int f \cdot \int g.

12. Summary of Key Properties

PropertyFormulaConditions
Linearity(αf+βg)=αf+βg\int(\alpha f + \beta g) = \alpha\int f + \beta\int gf,gR[a,b]f, g \in R[a,b]
Comparisonfgfgf \leq g \Rightarrow \int f \leq \int gf,gR[a,b]f, g \in R[a,b]
Additivityabf=acf+cbf\int_a^b f = \int_a^c f + \int_c^b fa<c<ba < c < b
Estimationm(ba)fM(ba)m(b-a) \leq \int f \leq M(b-a)mfMm \leq f \leq M
Triangleff|\int f| \leq \int|f|fR[a,b]f \in R[a,b]
Cauchy-Schwarz(fg)2f2g2(\int fg)^2 \leq \int f^2 \cdot \int g^2f,gR[a,b]f, g \in R[a,b]

13. What's Next?

In the next section, we discover the Fundamental Theorem of Calculus—the profound connection between differentiation and integration:

Variable upper limit integrals: F(x)=axf(t)dtF(x) = \int_a^x f(t)\,dt
FTC Part 1: F(x)=f(x)F'(x) = f(x)
Newton-Leibniz formula: abf=F(b)F(a)\int_a^b f = F(b) - F(a)
Applications to computing definite integrals

14. More Advanced Examples

Example 6.17: Integral of Periodic Function

Theorem: If ff has period TT, then for any aa:

aa+Tf(x)dx=0Tf(x)dx\int_a^{a+T} f(x)\,dx = \int_0^T f(x)\,dx

Proof:

By substitution u=xau = x - a on the left, and using periodicity:

aa+Tf(x)dx=0Tf(u+a)du=0Tf(u)du\int_a^{a+T} f(x)\,dx = \int_0^T f(u+a)\,du = \int_0^T f(u)\,du
Example 6.18: Bonnet's Mean Value Theorem

Theorem: If ff is monotonic and gR[a,b]g \in R[a,b], then ξ[a,b]\exists \xi \in [a,b]:

abf(x)g(x)dx=f(a)aξg(x)dx+f(b)ξbg(x)dx\int_a^b f(x)g(x)\,dx = f(a)\int_a^\xi g(x)\,dx + f(b)\int_\xi^b g(x)\,dx

This is useful for estimating products where one factor is monotonic.

Example 6.19: Chebyshev's Inequality

Theorem: If f,gf, g are both increasing (or both decreasing) on [a,b][a,b]:

abf(x)g(x)dx1baabf(x)dxabg(x)dx\int_a^b f(x)g(x)\,dx \geq \frac{1}{b-a}\int_a^b f(x)\,dx \cdot \int_a^b g(x)\,dx

Equality holds iff one of f,gf, g is constant.

Example 6.20: Jensen's Inequality for Integrals

Theorem: If ϕ\phi is convex and fR[a,b]f \in R[a,b]:

ϕ(1baabf(x)dx)1baabϕ(f(x))dx\phi\left(\frac{1}{b-a}\int_a^b f(x)\,dx\right) \leq \frac{1}{b-a}\int_a^b \phi(f(x))\,dx

Example: ϕ(x)=x2\phi(x) = x^2 gives (fˉ)2f2(\bar{f})^2 \leq \overline{f^2}.

15. Study Tips

Master the Basics First

Linearity and comparison are used constantly. Make sure you can apply them automatically before moving to more complex properties like Cauchy-Schwarz.

Practice Estimation

When you can't compute an integral exactly, use bounds. Find mfMm \leq f \leq Mand apply the estimation theorem.

Remember Direction of Inequalities

Triangle inequality: ff|\int f| \leq \int|f|. The absolute value of the integral is LESS than the integral of absolute value.

Use Symmetry

For symmetric intervals [a,a][-a, a]: odd functions integrate to 0, even functions double. This can save enormous computation.

16. Quick Reference Card

Key Formulas

Linearity(αf+βg)=αf+βg\int(\alpha f + \beta g) = \alpha\int f + \beta\int g
Additivityab=ac+cb\int_a^b = \int_a^c + \int_c^b
Triangleff|\int f| \leq \int|f|
C-S(fg)2f2g2(\int fg)^2 \leq \int f^2 \int g^2

Symmetry Properties

Odd function:

aaf(x)dx=0\int_{-a}^a f(x)\,dx = 0

Even function:

aaf(x)dx=20af(x)dx\int_{-a}^a f(x)\,dx = 2\int_0^a f(x)\,dx

Reverse limits:

baf=abf\int_b^a f = -\int_a^b f

Preservation

  • fRfRf \in R \Rightarrow |f| \in R
  • f,gRfgRf, g \in R \Rightarrow fg \in R
  • fRf2Rf \in R \Rightarrow f^2 \in R

Comparison

  • fgfgf \leq g \Rightarrow \int f \leq \int g
  • f0f0f \geq 0 \Rightarrow \int f \geq 0
  • mfMm \leq f \leq M bounds

Important Limits

  • limxn0\lim \int x^n \to 0 as nn \to \infty
  • Riemann-Lebesgue lemma
  • Dominated convergence

17. Extended Applications

Application to Probability

For a probability density function f(x)0f(x) \geq 0 with f=1\int_{-\infty}^\infty f = 1:

  • Expected value: E[X]=xf(x)dxE[X] = \int x f(x)\,dx
  • Variance: Var(X)=E[X2](E[X])2\text{Var}(X) = E[X^2] - (E[X])^2
  • Cauchy-Schwarz gives: E[XY]2E[X2]E[Y2]E[XY]^2 \leq E[X^2]E[Y^2]

Application to Physics

For a mass distribution with density ρ(x)\rho(x):

  • Total mass: M=ρ(x)dxM = \int \rho(x)\,dx
  • Center of mass: xˉ=1Mxρ(x)dx\bar{x} = \frac{1}{M}\int x\rho(x)\,dx
  • Moment of inertia: I=x2ρ(x)dxI = \int x^2 \rho(x)\,dx

Application to Signal Processing

For signals f(t)f(t) and g(t)g(t):

  • Energy: E=f(t)2dtE = \int |f(t)|^2\,dt
  • Cross-correlation: (fg)(τ)=f(t)g(t+τ)dt(f \star g)(\tau) = \int f(t)g(t+\tau)\,dt
  • Parseval's theorem connects time and frequency domains
Integral Properties Quiz
8
Questions
0
Correct
0%
Accuracy
1
For f,gR[a,b]f, g \in R[a,b] and α,βR\alpha, \beta \in \mathbb{R}, ab[αf+βg]dx\int_a^b [\alpha f + \beta g]\,dx equals:
Easy
Not attempted
2
If f(x)g(x)f(x) \leq g(x) on [a,b][a,b], then:
Easy
Not attempted
3
For a<c<ba < c < b, abfdx\int_a^b f\,dx equals:
Easy
Not attempted
4
If fR[a,b]f \in R[a,b], is fR[a,b]|f| \in R[a,b]?
Medium
Not attempted
5
The inequality abfdxabfdx|\int_a^b f\,dx| \leq \int_a^b |f|\,dx is called:
Easy
Not attempted
6
If f,gR[a,b]f, g \in R[a,b], is fgR[a,b]fg \in R[a,b]?
Medium
Not attempted
7
The Cauchy-Schwarz inequality states:
Hard
Not attempted
8
If mf(x)Mm \leq f(x) \leq M on [a,b][a,b], then:
Easy
Not attempted

Frequently Asked Questions

Why is linearity important?

Linearity allows us to break complex integrals into simpler parts and factor out constants, making computation much easier.

What's the geometric meaning of interval additivity?

The area under a curve from a to b equals the sum of areas from a to c and from c to b. This is intuitively obvious for positive functions.

Why does |f| integrable not imply f integrable?

Actually, the converse is more interesting: f integrable DOES imply |f| integrable. But knowing |f| is integrable doesn't tell us about f's integrability.

When is the triangle inequality an equality?

For |∫f| = ∫|f|, we need f to not change sign on [a,b]. If f changes sign, strict inequality holds.

How is Cauchy-Schwarz used in analysis?

It's used to bound products of integrals, prove convergence, and establish inequalities. It's the continuous analog of the vector dot product inequality.

Key Takeaways

Linearity

(αf+βg)=αf+βg\int(\alpha f + \beta g) = \alpha\int f + \beta\int g

Additivity

abf=acf+cbf\int_a^b f = \int_a^c f + \int_c^b f

Triangle Inequality

ff|\int f| \leq \int |f|

Estimation

m(ba)abfM(ba)m(b-a) \leq \int_a^b f \leq M(b-a)

Cauchy-Schwarz

(fg)2f2g2(\int fg)^2 \leq \int f^2 \cdot \int g^2

Product Rule

f,gR[a,b]fgR[a,b]f, g \in R[a,b] \Rightarrow fg \in R[a,b]

Decision Guide: Which Property to Use?

Breaking apart: Use linearity
Bounding: Use estimation theorem
Products: Use Cauchy-Schwarz
Symmetric interval: Use odd/even properties
Splitting domain: Use additivity
Absolute values: Use triangle inequality

18. Challenge Problems

Challenge 1: Proving Inequalities

Prove that for fR[0,1]f \in R[0,1] with f0f \geq 0:

(01f(x)dx)201f(x)2dx\left(\int_0^1 f(x)\,dx\right)^2 \leq \int_0^1 f(x)^2\,dx

Hint: Use Cauchy-Schwarz with g(x)=1g(x) = 1.

Challenge 2: Limit Evaluation

Evaluate using integral properties:

limn01nx1+n2x2dx\lim_{n \to \infty} \int_0^1 \frac{nx}{1 + n^2x^2}\,dx

Hint: Bound the integrand and use comparison.

Challenge 3: Hölder's Inequality

Prove the generalized Hölder inequality for 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1:

fg(fp)1/p(gq)1/q\int |fg| \leq \left(\int |f|^p\right)^{1/p} \left(\int |g|^q\right)^{1/q}

Note: Cauchy-Schwarz is the special case p=q=2p = q = 2.

Challenge 4: Integral Mean

Show that if ff is continuous and abf(x)g(x)dx=0\int_a^b f(x)g(x)\,dx = 0 for all continuous gg, then f0f \equiv 0.

Hint: Consider g=fg = f.

19. Connections to Higher Analysis

Lp Spaces

The properties we studied generalize to LpL^p spaces where fp=(fp)1/p\|f\|_p = (\int |f|^p)^{1/p}. Minkowski's inequality ensures these are genuine norms.

Inner Product Structure

The L2L^2 space has an inner product f,g=fg\langle f, g \rangle = \int fg. Cauchy-Schwarz becomes the familiar f,gfg|\langle f,g\rangle| \leq \|f\|\|g\|.

Completeness

Unlike R[a,b]R[a,b], the LpL^p spaces are complete—every Cauchy sequence converges. This is crucial for functional analysis.

Measure Theory

The Lebesgue integral extends these properties to a much larger class of functions, enabling powerful theorems like dominated convergence.

Quick Decision Guide

When to Use Linearity

  • Breaking a complex integrand into simpler parts
  • Pulling out constant factors
  • Combining multiple integrals

When to Use Comparison

  • Establishing bounds on integrals
  • Proving convergence of improper integrals
  • Showing an integral is positive/negative

21. Final Summary

The properties of definite integrals form the foundation for all computational and theoretical work with integrals. Mastering linearity, comparison, and the various inequalities will make integration much more manageable and intuitive.

Remember that these properties extend naturally to improper integrals, Lebesgue integrals, and multidimensional integrals. The patterns you learn here will serve you well throughout advanced mathematics, physics, and engineering courses.

Practice applying these properties systematically—they will become second nature with experience.