MathIsimple
π
θ
Δ
ε
CALC-4.2
4-5 hours

Chain Rule and Higher-Order Derivatives

Master the chain rule for composite functions, learn to differentiate inverse functions, implicit equations, parametric curves, and explore higher-order derivatives.

Learning Objectives
Apply the chain rule to differentiate composite functions
Derive and use the formula for derivatives of inverse functions
Perform implicit differentiation on equations defining y implicitly
Compute derivatives of functions given by parametric equations
Calculate higher-order derivatives of various functions
Apply Leibniz's formula for nth derivatives of products
Understand the relationship between higher differentials and higher derivatives
Solve complex differentiation problems combining multiple techniques

1. The Chain Rule

The chain rule is one of the most important rules in calculus. It tells us how to differentiate composite functions—functions built by putting one function inside another.

Theorem 4.4: Chain Rule

Let y=f(u)y = f(u) be differentiable at u0u_0, and u=g(x)u = g(x) be differentiable at x0x_0 with u0=g(x0)u_0 = g(x_0). Then the composite function F(x)=f(g(x))F(x) = f(g(x)) is differentiable at x0x_0, and:

F(x0)=f(g(x0))g(x0)F'(x_0) = f'(g(x_0)) \cdot g'(x_0)

In Leibniz notation: dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}

Proof of Theorem 4.4:

We compute the difference quotient:

F(x)F(x0)xx0=f(g(x))f(g(x0))xx0\frac{F(x) - F(x_0)}{x - x_0} = \frac{f(g(x)) - f(g(x_0))}{x - x_0}

When g(x)g(x0)g(x) \neq g(x_0), we can write:

=f(g(x))f(g(x0))g(x)g(x0)g(x)g(x0)xx0= \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \cdot \frac{g(x) - g(x_0)}{x - x_0}

As xx0x \to x_0: the first factor → f(g(x0))f'(g(x_0)), the second → g(x0)g'(x_0).

Example 4.5: Chain Rule Application

Find the derivative of y=sin(x2)y = \sin(x^2).

Let u=x2u = x^2, so y=sinuy = \sin u.

dydx=dydududx=cosu2x=2xcos(x2)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot 2x = 2x\cos(x^2)
Example 4.6: Nested Chain Rule

Find ddxesin(x2)\frac{d}{dx}e^{\sin(x^2)}.

Apply chain rule twice:

ddxesin(x2)=esin(x2)cos(x2)2x=2xcos(x2)esin(x2)\frac{d}{dx}e^{\sin(x^2)} = e^{\sin(x^2)} \cdot \cos(x^2) \cdot 2x = 2x\cos(x^2)e^{\sin(x^2)}
Remark 4.1: Chain Rule in Different Notations

The chain rule can be expressed in several equivalent ways:

Leibniz Notation

dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}

Prime Notation

(fg)(x)=f(g(x))g(x)(f \circ g)'(x) = f'(g(x)) \cdot g'(x)

Operator Notation

Dx[f(g(x))]=Duf(u)u=g(x)Dxg(x)D_x[f(g(x))] = D_u f(u)|_{u=g(x)} \cdot D_x g(x)

Differential Notation

df=f(u)du=f(g(x))g(x)dxdf = f'(u)\, du = f'(g(x)) \cdot g'(x)\, dx
Example 4.6b: Chain Rule with Trigonometric Functions

Problem: Differentiate y=tan3(2x)y = \tan^3(2x).

Solution:

Let u=tan(2x)u = \tan(2x), so y=u3y = u^3.

dydx=dydududx=3u2sec2(2x)2\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2 \cdot \sec^2(2x) \cdot 2
=6tan2(2x)sec2(2x)= 6\tan^2(2x)\sec^2(2x)
Example 4.6c: Chain Rule with Logarithms

Problem: Differentiate y=ln(sinx)y = \ln(\sin x) for x(0,π)x \in (0, \pi).

Solution:

dydx=1sinxcosx=cotx\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x

Note: We need sinx>0\sin x > 0, which holds for x(0,π)x \in (0, \pi).

Example 4.6d: Chain Rule with Square Roots

Problem: Differentiate y=1+x2y = \sqrt{1 + x^2}.

Solution:

Write as y=(1+x2)1/2y = (1 + x^2)^{1/2}.

dydx=12(1+x2)1/22x=x1+x2\frac{dy}{dx} = \frac{1}{2}(1 + x^2)^{-1/2} \cdot 2x = \frac{x}{\sqrt{1 + x^2}}
Theorem 4.4b: Generalized Chain Rule

For a composition of three or more functions y=f(g(h(x)))y = f(g(h(x))):

dydx=f(g(h(x)))g(h(x))h(x)\frac{dy}{dx} = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)

In Leibniz notation with u=h(x)u = h(x), v=g(u)v = g(u), y=f(v)y = f(v):

dydx=dydvdvdududx\frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx}
Example 4.6e: Triple Chain Rule

Problem: Find ddxcos(ex)\frac{d}{dx}\cos(e^{\sqrt{x}}).

Solution:

Let u=xu = \sqrt{x}, v=euv = e^u, y=cosvy = \cos v.

dydx=sin(ex)ex12x\frac{dy}{dx} = -\sin(e^{\sqrt{x}}) \cdot e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}
=exsin(ex)2x= -\frac{e^{\sqrt{x}}\sin(e^{\sqrt{x}})}{2\sqrt{x}}
Remark 4.1b: Common Chain Rule Patterns

Memorize these common patterns to speed up differentiation:

FunctionDerivative
[f(x)]n[f(x)]^nn[f(x)]n1f(x)n[f(x)]^{n-1} \cdot f'(x)
ef(x)e^{f(x)}ef(x)f(x)e^{f(x)} \cdot f'(x)
lnf(x)\ln f(x)f(x)f(x)\frac{f'(x)}{f(x)}
sinf(x)\sin f(x)cosf(x)f(x)\cos f(x) \cdot f'(x)
cosf(x)\cos f(x)sinf(x)f(x)-\sin f(x) \cdot f'(x)
tanf(x)\tan f(x)sec2f(x)f(x)\sec^2 f(x) \cdot f'(x)
af(x)a^{f(x)}af(x)lnaf(x)a^{f(x)} \ln a \cdot f'(x)
Example 4.6f: Combining Chain Rule with Other Rules

Problem: Differentiate y=ex2sinxy = \frac{e^{x^2}}{\sin x}.

Solution:

Use quotient rule combined with chain rule:

dydx=(ex2)sinxex2(sinx)sin2x\frac{dy}{dx} = \frac{(e^{x^2})' \cdot \sin x - e^{x^2} \cdot (\sin x)'}{\sin^2 x}

The derivative of ex2e^{x^2} requires chain rule:

(ex2)=ex22x(e^{x^2})' = e^{x^2} \cdot 2x

Substituting:

dydx=2xex2sinxex2cosxsin2x=ex2(2xsinxcosx)sin2x\frac{dy}{dx} = \frac{2xe^{x^2}\sin x - e^{x^2}\cos x}{\sin^2 x} = \frac{e^{x^2}(2x\sin x - \cos x)}{\sin^2 x}
Example 4.6g: Exponential of Exponential

Problem: Differentiate y=eexy = e^{e^x}.

Solution:

Let u=exu = e^x, so y=euy = e^u.

dydx=eududx=eexex=ex+ex\frac{dy}{dx} = e^u \cdot \frac{du}{dx} = e^{e^x} \cdot e^x = e^{x + e^x}
Example 4.6h: Nested Radicals

Problem: Differentiate y=x+xy = \sqrt{x + \sqrt{x}}.

Solution:

Write as y=(x+x1/2)1/2y = (x + x^{1/2})^{1/2}. Apply chain rule:

dydx=12(x+x)1/2(1+12x)\frac{dy}{dx} = \frac{1}{2}(x + \sqrt{x})^{-1/2} \cdot \left(1 + \frac{1}{2\sqrt{x}}\right)
=1+12x2x+x=2x+14xx+x= \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x + \sqrt{x}}} = \frac{2\sqrt{x} + 1}{4\sqrt{x}\sqrt{x + \sqrt{x}}}
Remark 4.1c: Recognizing Chain Rule Situations

You need the chain rule when you see:

  • Function of function: sin(x2)\sin(x^2), ecosxe^{\cos x}, ln(1+x2)\ln(1+x^2)
  • Powers of expressions: (3x+1)5(3x+1)^5, x2+1\sqrt{x^2+1}
  • Trig of non-x: tan(3x)\tan(3x), cos(x2)\cos(x^2)
  • Exponentials: e2xe^{2x}, 2x22^{x^2}
  • Logarithms: ln(x3)\ln(x^3), log(sinx)\log(\sin x)
Example 4.6i: Hyperbolic Functions with Chain Rule

Problem: Differentiate y=tanh(x2)y = \tanh(x^2).

Solution:

Recall (tanhu)=sech2u(\tanh u)' = \text{sech}^2 u.

dydx=sech2(x2)2x=2xsech2(x2)\frac{dy}{dx} = \text{sech}^2(x^2) \cdot 2x = 2x\,\text{sech}^2(x^2)
Example 4.6j: Related Rates Preview

Problem: If A=πr2A = \pi r^2 and rr depends on time, find dAdt\frac{dA}{dt}.

Solution:

Apply chain rule treating rr as r(t)r(t):

dAdt=dAdrdrdt=2πrdrdt\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt} = 2\pi r \cdot \frac{dr}{dt}

This is the foundation for solving related rates problems in applications.

2. Inverse Function Derivatives

Theorem 4.5: Derivative of Inverse Function

If ff is differentiable and strictly monotonic on an interval, and f(x0)0f'(x_0) \neq 0, then f1f^{-1} is differentiable at y0=f(x0)y_0 = f(x_0) with:

(f1)(y0)=1f(x0)=1f(f1(y0))(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}
Example 4.7: Derivative of arcsin x

Derive the formula for (arcsinx)(\arcsin x)'.

Let y=arcsinxy = \arcsin x, so x=sinyx = \sin y with y(π/2,π/2)y \in (-\pi/2, \pi/2).

dydx=1dx/dy=1cosy=11sin2y=11x2\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}

We use cosy>0\cos y > 0 on (π/2,π/2)(-\pi/2, \pi/2).

Proof of Theorem 4.5 (Inverse Function Derivative):

Let y0=f(x0)y_0 = f(x_0) and suppose f(x0)0f'(x_0) \neq 0.

(f1)(y0)=limyy0f1(y)f1(y0)yy0(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}

Let x=f1(y)x = f^{-1}(y), so y=f(x)y = f(x). As yy0y \to y_0, we have xx0x \to x_0:

=limxx0xx0f(x)f(x0)=1limxx0f(x)f(x0)xx0=1f(x0)= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)}
Example 4.7b: Derivative of arccos x

Problem: Find (arccosx)(\arccos x)'.

Solution:

Let y=arccosxy = \arccos x, so x=cosyx = \cos y with y(0,π)y \in (0, \pi).

dydx=1dx/dy=1siny=11cos2y=11x2\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{-\sin y} = -\frac{1}{\sqrt{1-\cos^2 y}} = -\frac{1}{\sqrt{1-x^2}}

We use siny>0\sin y > 0 on (0,π)(0, \pi).

Note: (arcsinx)+(arccosx)=0(\arcsin x)' + (\arccos x)' = 0, confirming arcsinx+arccosx=π2\arcsin x + \arccos x = \frac{\pi}{2}.

Example 4.7c: Derivative of arctan x

Problem: Find (arctanx)(\arctan x)'.

Solution:

Let y=arctanxy = \arctan x, so x=tanyx = \tan y with y(π/2,π/2)y \in (-\pi/2, \pi/2).

dydx=1dx/dy=1sec2y=cos2y\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{\sec^2 y} = \cos^2 y

Using sec2y=1+tan2y=1+x2\sec^2 y = 1 + \tan^2 y = 1 + x^2:

(arctanx)=11+x2(\arctan x)' = \frac{1}{1 + x^2}
Remark 4.2: Summary of Inverse Trigonometric Derivatives
(arcsinx)=11x2(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}
(arccosx)=11x2(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}
(arctanx)=11+x2(\arctan x)' = \frac{1}{1+x^2}
(arccot x)=11+x2(\text{arccot } x)' = -\frac{1}{1+x^2}
(arcsec x)=1xx21(\text{arcsec } x)' = \frac{1}{|x|\sqrt{x^2-1}}
(arccsc x)=1xx21(\text{arccsc } x)' = -\frac{1}{|x|\sqrt{x^2-1}}
Example 4.7d: Chain Rule with Inverse Functions

Problem: Differentiate y=arctan(ex)y = \arctan(e^x).

Solution:

Using chain rule with u=exu = e^x:

dydx=11+(ex)2ex=ex1+e2x\frac{dy}{dx} = \frac{1}{1+(e^x)^2} \cdot e^x = \frac{e^x}{1+e^{2x}}
Example 4.7e: Inverse of a Specific Function

Problem: If f(x)=x3+xf(x) = x^3 + x, find (f1)(2)(f^{-1})'(2).

Solution:

First find x0x_0 such that f(x0)=2f(x_0) = 2.

x3+x=2x^3 + x = 2 gives x0=1x_0 = 1 (by inspection).

Since f(x)=3x2+1f'(x) = 3x^2 + 1, we have f(1)=4f'(1) = 4.

(f1)(2)=1f(f1(2))=1f(1)=14(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{1}{4}

3. Implicit Differentiation

When yy is defined implicitly by an equation F(x,y)=0F(x, y) = 0, we differentiate both sides with respect to xx, treating yy as a function of xx.

Example 4.8: Circle

Find dydx\frac{dy}{dx} for the circle x2+y2=r2x^2 + y^2 = r^2.

Differentiating implicitly:

2x+2ydydx=0    dydx=xy2x + 2y\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{x}{y}
Example 4.9: Hyperbola

For x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, find yy''.

First derivative: 2xa22yb2y=0\frac{2x}{a^2} - \frac{2y}{b^2}y' = 0, so y=b2xa2yy' = \frac{b^2 x}{a^2 y}

Second derivative (differentiating again):

y=b2(yxy)a2y2=b2a2y2(yb2x2a2y)=b4a4y3y'' = \frac{b^2(y - xy')}{a^2 y^2} = \frac{b^2}{a^2 y^2}\left(y - \frac{b^2 x^2}{a^2 y}\right) = -\frac{b^4}{a^4 y^3}
Remark 4.3: Steps for Implicit Differentiation
  1. Differentiate both sides with respect to xx, treating yy as a function of xx.
  2. Apply chain rule when differentiating terms with yy: ddx[f(y)]=f(y)dydx\frac{d}{dx}[f(y)] = f'(y) \cdot \frac{dy}{dx}.
  3. Solve for dydx\frac{dy}{dx} by collecting all terms with dydx\frac{dy}{dx} on one side.
Example 4.9b: Implicit Differentiation with Products

Problem: Find dydx\frac{dy}{dx} if xy+y2=x2xy + y^2 = x^2.

Solution:

Differentiating implicitly:

ddx(xy)+ddx(y2)=ddx(x2)\frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}(x^2)
y+xdydx+2ydydx=2xy + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 2x

Solving for dydx\frac{dy}{dx}:

dydx(x+2y)=2xy    dydx=2xyx+2y\frac{dy}{dx}(x + 2y) = 2x - y \implies \frac{dy}{dx} = \frac{2x - y}{x + 2y}
Example 4.9c: Implicit Differentiation with Trigonometric Functions

Problem: Find dydx\frac{dy}{dx} if sin(xy)=x\sin(xy) = x.

Solution:

Differentiating using chain rule on left side:

cos(xy)ddx(xy)=1\cos(xy) \cdot \frac{d}{dx}(xy) = 1
cos(xy)(y+xdydx)=1\cos(xy) \cdot \left(y + x\frac{dy}{dx}\right) = 1

Solving for dydx\frac{dy}{dx}:

xcos(xy)dydx=1ycos(xy)x\cos(xy)\frac{dy}{dx} = 1 - y\cos(xy)
dydx=1ycos(xy)xcos(xy)\frac{dy}{dx} = \frac{1 - y\cos(xy)}{x\cos(xy)}
Example 4.9d: Finding Tangent Line via Implicit Differentiation

Problem: Find the equation of the tangent line to x3+y3=6xyx^3 + y^3 = 6xy at (3,3)(3, 3).

Solution:

Verify point: 27+27=54=6(9)27 + 27 = 54 = 6(9)

Differentiating implicitly:

3x2+3y2dydx=6y+6xdydx3x^2 + 3y^2\frac{dy}{dx} = 6y + 6x\frac{dy}{dx}
dydx(3y26x)=6y3x2\frac{dy}{dx}(3y^2 - 6x) = 6y - 3x^2
dydx=6y3x23y26x=2yx2y22x\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{2y - x^2}{y^2 - 2x}

At (3,3)(3, 3):

dydx(3,3)=6996=33=1\frac{dy}{dx}\Big|_{(3,3)} = \frac{6 - 9}{9 - 6} = \frac{-3}{3} = -1

Tangent line: y3=1(x3)y - 3 = -1(x - 3), i.e., y=x+6y = -x + 6.

Remark 4.3b: Logarithmic Differentiation

For functions of the form y=[f(x)]g(x)y = [f(x)]^{g(x)} or products of many factors, use logarithmic differentiation:

  1. Take ln\ln of both sides: lny=g(x)lnf(x)\ln y = g(x) \ln f(x)
  2. Differentiate implicitly: 1ydydx=\frac{1}{y}\frac{dy}{dx} = \ldots
  3. Multiply both sides by yy to get dydx\frac{dy}{dx}
Example 4.9e: Logarithmic Differentiation

Problem: Differentiate y=xsinxy = x^{\sin x} for x>0x > 0.

Solution:

Take ln of both sides:

lny=sinxlnx\ln y = \sin x \cdot \ln x

Differentiate implicitly:

1ydydx=cosxlnx+sinx1x\frac{1}{y}\frac{dy}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}

Multiply by y=xsinxy = x^{\sin x}:

dydx=xsinx(cosxlnx+sinxx)\frac{dy}{dx} = x^{\sin x}\left(\cos x \ln x + \frac{\sin x}{x}\right)

4. Parametric Derivatives

Theorem 4.6: Derivatives of Parametric Curves

For a curve given by x=ϕ(t),y=ψ(t)x = \phi(t), y = \psi(t):

dydx=ψ(t)ϕ(t)=dy/dtdx/dt\frac{dy}{dx} = \frac{\psi'(t)}{\phi'(t)} = \frac{dy/dt}{dx/dt}

For the second derivative:

d2ydx2=ddt(dydx)1dx/dt=ψϕψϕ(ϕ)3\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{dx/dt} = \frac{\psi''\phi' - \psi'\phi''}{(\phi')^3}
Example 4.10: Cycloid

For the cycloid x=tsint,y=1costx = t - \sin t, y = 1 - \cos t, find yy''.

dxdt=1cost,dydt=sint\frac{dx}{dt} = 1 - \cos t, \quad \frac{dy}{dt} = \sin t
dydx=sint1cost\frac{dy}{dx} = \frac{\sin t}{1 - \cos t}

For the second derivative, differentiate and divide by dx/dtdx/dt:

d2ydx2=1(1cost)2\frac{d^2y}{dx^2} = -\frac{1}{(1-\cos t)^2}
Proof of Theorem 4.6 (Parametric Derivatives):

Since yy is a function of tt and tt is implicitly a function of xx:

dydx=dydtdtdx\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}

Using dtdx=1dx/dt\frac{dt}{dx} = \frac{1}{dx/dt} (inverse function derivative):

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

For the second derivative:

d2ydx2=ddx(dydx)=ddt(dydx)dtdx\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx}
Example 4.10b: Ellipse in Parametric Form

Problem: For the ellipse x=acost,y=bsintx = a\cos t, y = b\sin t, find dydx\frac{dy}{dx} and d2ydx2\frac{d^2y}{dx^2}.

Solution:

dxdt=asint,dydt=bcost\frac{dx}{dt} = -a\sin t, \quad \frac{dy}{dt} = b\cos t
dydx=bcostasint=bacott\frac{dy}{dx} = \frac{b\cos t}{-a\sin t} = -\frac{b}{a}\cot t

For the second derivative:

ddt(dydx)=ba(csc2t)=bacsc2t\frac{d}{dt}\left(\frac{dy}{dx}\right) = -\frac{b}{a} \cdot (-\csc^2 t) = \frac{b}{a}\csc^2 t
d2ydx2=(b/a)csc2tasint=ba2csc3t=ba2sin3t\frac{d^2y}{dx^2} = \frac{(b/a)\csc^2 t}{-a\sin t} = -\frac{b}{a^2}\csc^3 t = -\frac{b}{a^2\sin^3 t}
Example 4.10c: Parabola in Parametric Form

Problem: For x=t2,y=t3x = t^2, y = t^3, find the tangent line at t=2t = 2.

Solution:

At t=2t = 2: x=4x = 4, y=8y = 8.

dydx=3t22t=3t2\frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2}

At t=2t = 2: slope = 3(2)2=3\frac{3(2)}{2} = 3.

Tangent line: y8=3(x4)y - 8 = 3(x - 4), i.e., y=3x4y = 3x - 4.

Remark 4.4: Polar Coordinates

For a curve in polar coordinates r=f(θ)r = f(\theta), we can convert to parametric form:

x=rcosθ=f(θ)cosθ,y=rsinθ=f(θ)sinθx = r\cos\theta = f(\theta)\cos\theta, \quad y = r\sin\theta = f(\theta)\sin\theta

Then apply parametric derivative formulas:

dydx=dy/dθdx/dθ=f(θ)sinθ+f(θ)cosθf(θ)cosθf(θ)sinθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}
Example 4.10d: Polar Curve Derivative

Problem: For the cardioid r=1+cosθr = 1 + \cos\theta, find dydx\frac{dy}{dx} at θ=π/2\theta = \pi/2.

Solution:

We have r=1+cosθr = 1 + \cos\theta, r=sinθr' = -\sin\theta.

dydx=rsinθ+rcosθrcosθrsinθ\frac{dy}{dx} = \frac{r'\sin\theta + r\cos\theta}{r'\cos\theta - r\sin\theta}

At θ=π/2\theta = \pi/2: r=1r = 1, r=1r' = -1, sinθ=1\sin\theta = 1, cosθ=0\cos\theta = 0.

dydx=(1)(1)+(1)(0)(1)(0)(1)(1)=11=1\frac{dy}{dx} = \frac{(-1)(1) + (1)(0)}{(-1)(0) - (1)(1)} = \frac{-1}{-1} = 1

5. Higher-Order Derivatives

Definition 4.3: Higher-Order Derivatives

The nth derivative of ff is defined recursively:

f(n)(x)=ddxf(n1)(x),f(0)(x)=f(x)f^{(n)}(x) = \frac{d}{dx}f^{(n-1)}(x), \quad f^{(0)}(x) = f(x)

Notation: f,f,f(4),f'', f''', f^{(4)}, \ldots or d2ydx2,d3ydx3,\frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \ldots

Standard Higher Derivatives
(eax)(n)=aneax(e^{ax})^{(n)} = a^n e^{ax}
(sinx)(n)=sin(x+nπ2)(\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right)
(cosx)(n)=cos(x+nπ2)(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)
(xm)(n)=m!(mn)!xmn for nm(x^m)^{(n)} = \frac{m!}{(m-n)!}x^{m-n} \text{ for } n \leq m
Theorem 4.7: Leibniz's Formula

For the nth derivative of a product:

(fg)(n)=k=0n(nk)f(k)g(nk)(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}

This generalizes the product rule to arbitrary order.

Example 4.11: Leibniz Formula

Find (x2ex)(n)(x^2 e^x)^{(n)}.

(x2ex)(n)=k=0min(n,2)(nk)(x2)(k)(ex)(nk)(x^2 e^x)^{(n)} = \sum_{k=0}^{\min(n,2)} \binom{n}{k} (x^2)^{(k)} (e^x)^{(n-k)}
=(n0)x2ex+(n1)(2x)ex+(n2)(2)ex= \binom{n}{0}x^2 e^x + \binom{n}{1}(2x)e^x + \binom{n}{2}(2)e^x
=ex(x2+2nx+n(n1))= e^x\left(x^2 + 2nx + n(n-1)\right)
Proof of Theorem 4.7 (Leibniz's Formula):

By induction on nn:

Base case: n=1n = 1 is the product rule: (fg)=fg+fg(fg)' = f'g + fg'.

Inductive step: Assume true for nn:

(fg)(n+1)=ddx[k=0n(nk)f(k)g(nk)](fg)^{(n+1)} = \frac{d}{dx}\left[\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}\right]
=k=0n(nk)[f(k+1)g(nk)+f(k)g(n+1k)]= \sum_{k=0}^{n} \binom{n}{k} \left[f^{(k+1)} g^{(n-k)} + f^{(k)} g^{(n+1-k)}\right]

Reindexing and using (nk)+(nk1)=(n+1k)\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}:

=k=0n+1(n+1k)f(k)g(n+1k)= \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)}
Example 4.11b: nth Derivative of Polynomial × Exponential

Problem: Find (x3e2x)(n)(x^3 e^{2x})^{(n)}.

Solution:

Using Leibniz formula with f=x3f = x^3, g=e2xg = e^{2x}:

  • (x3)(0)=x3(x^3)^{(0)} = x^3, (x3)(1)=3x2(x^3)^{(1)} = 3x^2, (x3)(2)=6x(x^3)^{(2)} = 6x, (x3)(3)=6(x^3)^{(3)} = 6
  • (e2x)(k)=2ke2x(e^{2x})^{(k)} = 2^k e^{2x}
(x3e2x)(n)=k=0min(n,3)(nk)(x3)(k)2nke2x(x^3 e^{2x})^{(n)} = \sum_{k=0}^{\min(n,3)} \binom{n}{k} (x^3)^{(k)} 2^{n-k} e^{2x}

For n3n \geq 3:

=2ne2x[x3+3n2x2+3n(n1)4x+n(n1)(n2)8]= 2^n e^{2x}\left[x^3 + \frac{3n}{2}x^2 + \frac{3n(n-1)}{4}x + \frac{n(n-1)(n-2)}{8}\right]
Example 4.11c: nth Derivative of Trigonometric Functions

Problem: Find (xsinx)(n)(x\sin x)^{(n)}.

Solution:

Using Leibniz formula with f=xf = x, g=sinxg = \sin x:

(xsinx)(n)=(n0)xsin(n)x+(n1)1sin(n1)x(x\sin x)^{(n)} = \binom{n}{0}x \cdot \sin^{(n)}x + \binom{n}{1} \cdot 1 \cdot \sin^{(n-1)}x

Using sin(k)x=sin(x+kπ/2)\sin^{(k)}x = \sin(x + k\pi/2):

=xsin(x+nπ2)+nsin(x+(n1)π2)= x\sin\left(x + \frac{n\pi}{2}\right) + n\sin\left(x + \frac{(n-1)\pi}{2}\right)
Remark 4.5: Higher Derivatives of Standard Functions
Functionnth Derivative
eaxe^{ax}aneaxa^n e^{ax}
sin(ax)\sin(ax)ansin(ax+nπ/2)a^n \sin(ax + n\pi/2)
cos(ax)\cos(ax)ancos(ax+nπ/2)a^n \cos(ax + n\pi/2)
lnx\ln x(1)n1(n1)!xn\frac{(-1)^{n-1}(n-1)!}{x^n} for n1n \geq 1
xmx^m (nmn \leq m)m!(mn)!xmn\frac{m!}{(m-n)!}x^{m-n}
1xa\frac{1}{x-a}(1)nn!(xa)n+1\frac{(-1)^n n!}{(x-a)^{n+1}}
Example 4.11d: nth Derivative of Rational Function

Problem: Find (11x)(n)\left(\frac{1}{1-x}\right)^{(n)}.

Solution:

Write as (1x)1(1-x)^{-1} and differentiate:

  • f(1)=(1x)2f^{(1)} = (1-x)^{-2}
  • f(2)=2(1x)3f^{(2)} = 2(1-x)^{-3}
  • f(3)=6(1x)4f^{(3)} = 6(1-x)^{-4}

Pattern: f(n)=n!(1x)(n+1)=n!(1x)n+1f^{(n)} = n!(1-x)^{-(n+1)} = \frac{n!}{(1-x)^{n+1}}

Definition 4.4: Higher-Order Differentials

The nth differential of y=f(x)y = f(x) is defined as:

dny=f(n)(x)(dx)nd^n y = f^{(n)}(x) \, (dx)^n

Note: This defines d2y=f(x)(dx)2d^2y = f''(x)(dx)^2, d3y=f(x)(dx)3d^3y = f'''(x)(dx)^3, etc.

Remark 4.5b: Physical Interpretation

Higher derivatives have important physical meanings:

Position: s(t)s(t)

Describes where an object is at time tt

Velocity: v=s(t)v = s'(t)

Rate of change of position

Acceleration: a=s(t)a = s''(t)

Rate of change of velocity

Jerk: j=s(t)j = s'''(t)

Rate of change of acceleration

Example 4.11e: Curvature Formula

Connection: The curvature of a curve y=f(x)y = f(x) involves the second derivative:

κ=f(x)(1+[f(x)]2)3/2\kappa = \frac{|f''(x)|}{(1 + [f'(x)]^2)^{3/2}}

Curvature measures how sharply a curve bends. It uses both first and second derivatives!

Remark 4.5c: C^n Functions

We classify functions by their differentiability:

  • C⁰Continuous functions
  • Continuously differentiable (f' exists and is continuous)
  • f, f', f'' all continuous
  • CⁿFirst n derivatives exist and are continuous
  • C^∞Smooth functions: infinitely differentiable (e.g., sin, cos, e^x)
Example 4.11f: Function That Is Not C^∞

Example: Show f(x)=x3f(x) = |x|^3 is C2C^2 but not C3C^3 at x=0x = 0.

Solution:

For x0x \neq 0:

  • f(x)=x3={x3x>0x3x<0f(x) = |x|^3 = \begin{cases} x^3 & x > 0 \\ -x^3 & x < 0 \end{cases}
  • f(x)=3xsgn(x)x=3xxf'(x) = 3|x| \cdot \text{sgn}(x) \cdot |x| = 3x|x|
  • f(x)=6xf''(x) = 6|x|

At x=0x = 0: f(0)=0f''(0) = 0 and ff'' is continuous.

But f(x)f'''(x) jumps from 6-6 to +6+6 at x=0x = 0.

Conclusion: fC2f \in C^2 but fC3f \notin C^3 at x=0x = 0.

Corollary 4.1: Pattern for nth Derivative

Many functions have elegant closed-form nth derivatives:

Polynomial xmx^m:

(xm)(n)={m!(mn)!xmnnm0n>m(x^m)^{(n)} = \begin{cases} \frac{m!}{(m-n)!}x^{m-n} & n \leq m \\ 0 & n > m \end{cases}

Shifted power (xa)m(x-a)^m:

[(xa)m](n)=m!(mn)!(xa)mn\left[(x-a)^m\right]^{(n)} = \frac{m!}{(m-n)!}(x-a)^{m-n}

Partial fractions:

(1xa)(n)=(1)nn!(xa)n+1\left(\frac{1}{x-a}\right)^{(n)} = \frac{(-1)^n n!}{(x-a)^{n+1}}
Chapter Summary

This module covered essential techniques for differentiating complex functions:

  • 1.Chain Rule allows differentiation of composite functions by multiplying the derivative of the outer function by the derivative of the inner function.
  • 2.Inverse Function Derivatives follow the formula (f1)(y)=1/f(x)(f^{-1})'(y) = 1/f'(x), leading to derivatives of arcsin, arccos, arctan, etc.
  • 3.Implicit Differentiation handles equations where y is not explicitly solved, by treating y as y(x) and applying chain rule.
  • 4.Parametric Derivatives use dy/dx=(dy/dt)/(dx/dt)dy/dx = (dy/dt)/(dx/dt) for curves given parametrically.
  • 5.Higher Derivatives and Leibniz's formula extend differentiation to arbitrary orders.
Chain Rule & Higher Derivatives Practice
15
Questions
0
Correct
0%
Accuracy
1
If y=sin(x2)y = \sin(x^2), what is dydx\frac{dy}{dx}?
Easy
Not attempted
2
If y=esinxy = e^{\sin x}, find dydx\frac{dy}{dx}.
Easy
Not attempted
3
For the inverse function, if f(x)=3x2f'(x) = 3x^2 and f(2)=8f(2) = 8, what is (f1)(8)(f^{-1})'(8)?
Medium
Not attempted
4
Using implicit differentiation on x2+y2=25x^2 + y^2 = 25, find dydx\frac{dy}{dx}.
Easy
Not attempted
5
If x=t2x = t^2 and y=t3y = t^3, what is dydx\frac{dy}{dx}?
Medium
Not attempted
6
What is the second derivative of f(x)=e2xf(x) = e^{2x}?
Easy
Not attempted
7
Find d2ydx2\frac{d^2y}{dx^2} for the parametric curve x=costx = \cos t, y=sinty = \sin t.
Hard
Not attempted
8
What is the nth derivative of f(x)=eaxf(x) = e^{ax}?
Medium
Not attempted
9
Find (ln(x2+1))(\ln(x^2+1))'.
Easy
Not attempted
10
If y=arctanxy = \arctan x, what is yy'?
Easy
Not attempted
11
For ey=xye^y = xy, find dydx\frac{dy}{dx} using implicit differentiation.
Medium
Not attempted
12
What is (sin2x)(\sin^2 x)'?
Easy
Not attempted
13
Find (xx)(x^x)' for x>0x > 0.
Hard
Not attempted
14
For x=t3x = t^3, y=t2y = t^2, find d2ydx2\frac{d^2y}{dx^2}.
Hard
Not attempted
15
Using Leibniz formula, (xex)=(xe^x)'' = ?
Medium
Not attempted

Frequently Asked Questions

Why is the chain rule important?

The chain rule allows us to differentiate composite functions, which appear everywhere in applications. Without it, we couldn't differentiate functions like sin(x²), e^(cos x), or ln(1+x²).

How do I know when to use implicit differentiation?

Use implicit differentiation when y is not explicitly given as a function of x, such as in equations like x² + y² = 1 or xy + sin(y) = x.

What's the connection between parametric derivatives and chain rule?

The formula dy/dx = (dy/dt)/(dx/dt) comes from the chain rule: dy/dx = (dy/dt)·(dt/dx) = (dy/dt)/(dx/dt).

Is d²y/dx² the same as (dy/dx)²?

No! d²y/dx² is the second derivative (derivative of the derivative), while (dy/dx)² is the square of the first derivative. These are different quantities.

How do I identify the 'inner' and 'outer' functions?

The outer function is applied last. In f(g(x)), f is outer, g is inner. Example: sin(x²) has outer=sin, inner=x². Think about order of operations.

When should I use logarithmic differentiation?

Use it for: (1) y = f(x)^g(x) where both base and exponent contain x, (2) products of many terms, (3) complicated quotients. It converts products to sums.

How do I find the second derivative for parametric curves?

First find dy/dx = (dy/dt)/(dx/dt). Then d²y/dx² = (d/dt)(dy/dx) ÷ (dx/dt). Don't just differentiate dy/dx directly with respect to t!

What's the pattern for nth derivative of e^(ax)?

Each differentiation brings down a factor of a: (e^(ax))^(n) = a^n · e^(ax). This is because d/dx(e^(ax)) = a·e^(ax).

How do I remember Leibniz's formula?

It's like the binomial theorem: (f·g)^(n) = Σ C(n,k) f^(k) g^(n-k). The binomial coefficients distribute the n derivatives between f and g.

What happens to inverse trig derivatives with chain rule?

Apply chain rule as usual. Example: d/dx[arctan(2x)] = 1/(1+(2x)²) · 2 = 2/(1+4x²). The inner function derivative multiplies.

Key Takeaways

Chain Rule

(fg)(x)=f(g(x))g(x)(f \circ g)'(x) = f'(g(x)) \cdot g'(x)

Inverse Function

(f1)(y)=1f(f1(y))(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}

Parametric Derivative

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

Leibniz Formula

(fg)(n)=k=0n(nk)f(k)g(nk)(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}

Implicit Differentiation

Treat y as y(x), apply chain rule

Logarithmic Diff.

Take ln, differentiate, multiply by y

arcsin x

(arcsinx)=11x2(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}

arctan x

(arctanx)=11+x2(\arctan x)' = \frac{1}{1+x^2}

Study Tips

Chain Rule Strategy

Work from outside in. Identify the outermost function first, differentiate it, then multiply by the derivative of the inner function.

Implicit Differentiation

Always remember to write dy/dx whenever you differentiate a term containing y. Then solve for dy/dx algebraically.

Parametric Curves

For second derivatives, don't forget to divide by dx/dt again. Common mistake: differentiating dy/dx with respect to t only.

Higher Derivatives

Look for patterns! Many functions have predictable nth derivative formulas. Memorize key patterns for exponentials, trig, and powers.

What's Next?

In the next module, you will learn about the Mean Value Theorems, fundamental results that connect derivatives to function behavior.

  • Rolle's Theorem: zeros of derivatives between zeros of functions
  • Lagrange's Mean Value Theorem: f(b)f(a)=f(c)(ba)f(b)-f(a) = f'(c)(b-a)
  • Cauchy's Mean Value Theorem: generalization for two functions
  • Applications to proving inequalities and limits