MathIsimple
π
θ
Δ
ε
Home/Calculus/Chapter 4/Applications
CALC-4.5
4-5 hours

Applications of Derivatives

Apply derivatives to analyze function behavior: monotonicity, extrema, convexity, inflection points, and asymptotes. Learn to sketch graphs and prove important inequalities.

Learning Objectives
Use derivatives to determine monotonicity of functions
Find and classify local and global extrema
Determine convexity using the second derivative
Find inflection points where concavity changes
Identify vertical, horizontal, and oblique asymptotes
Apply the first and second derivative tests
Sketch graphs using derivative information
Prove inequalities using convexity (Jensen, Young, Hölder)

1. Monotonicity and Extrema

Theorem 4.18: Monotonicity Criterion

Let fC[a,b]D(a,b)f \in C[a,b] \cap D(a,b). Then:

  • f(x)>0f'(x) > 0 on (a,b)(a,b)ff is strictly increasing on [a,b][a,b]
  • f(x)<0f'(x) < 0 on (a,b)(a,b)ff is strictly decreasing on [a,b][a,b]
  • f(x)=0f'(x) = 0 on (a,b)(a,b)ff is constant on [a,b][a,b]
Theorem 4.19: First Derivative Test

Suppose f(x0)=0f'(x_0) = 0. Then:

  • ff' changes from + to − at x0x_0 ⟹ local maximum at x0x_0
  • ff' changes from − to + at x0x_0 ⟹ local minimum at x0x_0
  • ff' does not change sign ⟹ neither max nor min
Theorem 4.20: Second Derivative Test

If f(x0)=0f'(x_0) = 0 and f(x0)f''(x_0) exists:

  • f(x0)<0f''(x_0) < 0 ⟹ local maximum at x0x_0
  • f(x0)>0f''(x_0) > 0 ⟹ local minimum at x0x_0
  • f(x0)=0f''(x_0) = 0 ⟹ test is inconclusive
Proof of Theorem 4.18 (Monotonicity Criterion):

Suppose f(x)>0f'(x) > 0 on (a,b)(a, b). For x1<x2x_1 < x_2 in [a,b][a, b]:

By MVT, ξ(x1,x2)\exists \xi \in (x_1, x_2):

f(x2)f(x1)=f(ξ)(x2x1)f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)

Since f(ξ)>0f'(\xi) > 0 and x2x1>0x_2 - x_1 > 0, we have f(x2)>f(x1)f(x_2) > f(x_1).

Example 4.18: Finding Monotonicity Intervals

Problem: Find the intervals of monotonicity for f(x)=x33x2+2f(x) = x^3 - 3x^2 + 2.

Solution:

Step 1: Find f(x)=3x26x=3x(x2)f'(x) = 3x^2 - 6x = 3x(x - 2).

Step 2: Critical points: x=0x = 0 and x=2x = 2.

Step 3: Sign analysis:

  • x<0x < 0: f(x)>0f'(x) > 0 (increasing)
  • 0<x<20 < x < 2: f(x)<0f'(x) < 0 (decreasing)
  • x>2x > 2: f(x)>0f'(x) > 0 (increasing)

Local max at x=0x = 0: f(0)=2f(0) = 2. Local min at x=2x = 2: f(2)=2f(2) = -2.

Example 4.18b: Using Second Derivative Test

Problem: Classify the critical points of f(x)=x44x3f(x) = x^4 - 4x^3.

Solution:

f(x)=4x312x2=4x2(x3)f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3).

Critical points: x=0x = 0 and x=3x = 3.

f(x)=12x224x=12x(x2)f''(x) = 12x^2 - 24x = 12x(x - 2).

  • • At x=0x = 0: f(0)=0f''(0) = 0 (inconclusive)
  • • At x=3x = 3: f(3)=1231=36>0f''(3) = 12 \cdot 3 \cdot 1 = 36 > 0 (local minimum)

For x=0x = 0, use first derivative test: f<0f' < 0 on both sides, so neither max nor min.

Remark 4.1: Global vs Local Extrema

To find global extrema on a closed interval [a,b][a, b]:

  1. Find all critical points (where f=0f' = 0 or undefined)
  2. Evaluate ff at all critical points and endpoints
  3. Compare all values to find global max/min

Note: On an open interval or unbounded domain, global extrema may not exist!

Example 4.18c: Global Extrema on Closed Interval

Problem: Find the global max and min of f(x)=x33x+1f(x) = x^3 - 3x + 1 on [2,2][-2, 2].

Solution:

f(x)=3x23=3(x1)(x+1)f'(x) = 3x^2 - 3 = 3(x-1)(x+1). Critical points: x=±1x = \pm 1.

Evaluate at critical points and endpoints:

  • f(2)=8+6+1=1f(-2) = -8 + 6 + 1 = -1
  • f(1)=1+3+1=3f(-1) = -1 + 3 + 1 = 3
  • f(1)=13+1=1f(1) = 1 - 3 + 1 = -1
  • f(2)=86+1=3f(2) = 8 - 6 + 1 = 3

Global max: 3 at x=1x = -1 and x=2x = 2. Global min: -1 at x=2x = -2 and x=1x = 1.

Theorem 4.20b: Higher-Order Derivative Test

If f(x0)=f(x0)==f(n1)(x0)=0f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0 but f(n)(x0)0f^{(n)}(x_0) \neq 0:

  • If nn is even and f(n)(x0)>0f^{(n)}(x_0) > 0: local minimum
  • If nn is even and f(n)(x0)<0f^{(n)}(x_0) < 0: local maximum
  • If nn is odd: inflection point (neither max nor min)
Example 4.18d: Optimization Word Problem

Problem: A farmer has 100m of fencing. What dimensions give maximum rectangular area?

Solution:

Let length = xx, width = yy. Constraint: 2x+2y=1002x + 2y = 100, so y=50xy = 50 - x.

Area: A(x)=x(50x)=50xx2A(x) = x(50 - x) = 50x - x^2 for x[0,50]x \in [0, 50].

A(x)=502x=0A'(x) = 50 - 2x = 0 gives x=25x = 25.

A(x)=2<0A''(x) = -2 < 0, so x=25x = 25 is a maximum.

Answer: Square with side 25m gives max area = 625 m².

Remark 4.1b: Critical Points Summary

Types of Critical Points:

  • Type 1: f(x0)=0f'(x_0) = 0 (stationary points)
  • Type 2: f(x0)f'(x_0) doesn't exist but f(x0)f(x_0) exists (corner points)

Both types can be local extrema. Example: x|x| has a minimum at x=0x = 0 where ff' doesn't exist.

Example 4.18e: Function with Corner Point

Problem: Find the extrema of f(x)=x21f(x) = |x^2 - 1|.

Solution:

f(x)=x21={x21x11x2x<1f(x) = |x^2 - 1| = \begin{cases} x^2 - 1 & |x| \geq 1 \\ 1 - x^2 & |x| < 1 \end{cases}

Critical points: x=0x = 0 (stationary), x=±1x = \pm 1 (corners).

Values: f(0)=1f(0) = 1, f(±1)=0f(\pm 1) = 0.

Local max at x=0x = 0. Local min at x=±1x = \pm 1.

Example 4.18f: Proving Inequality Using Derivatives

Problem: Prove that ex1+xe^x \geq 1 + x for all xRx \in \mathbb{R}.

Solution:

Let f(x)=ex1xf(x) = e^x - 1 - x. Then f(x)=ex1f'(x) = e^x - 1.

f(x)=0f'(x) = 0 at x=0x = 0. f(x)=ex>0f''(x) = e^x > 0, so x=0x = 0 is a global min.

f(0)=110=0f(0) = 1 - 1 - 0 = 0.

Since f(x)f(0)=0f(x) \geq f(0) = 0, we have ex1+xe^x \geq 1 + x. ✓

2. Convexity

Definition 4.5: Convex Function

ff is convex on [a,b][a,b] if for all x1,x2[a,b]x_1, x_2 \in [a,b] and t[0,1]t \in [0,1]:

f(tx1+(1t)x2)tf(x1)+(1t)f(x2)f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)

Geometrically: the graph lies below any chord.

Theorem 4.21: Second Derivative Test for Convexity

Let fC[a,b]D2(a,b)f \in C[a,b] \cap D^2(a,b). Then:

  • f(x)0f''(x) \geq 0 on (a,b)(a,b)ff is convex on [a,b][a,b]
  • f(x)0f''(x) \leq 0 on (a,b)(a,b)ff is concave on [a,b][a,b]
Theorem 4.22: Jensen's Inequality

If ff is convex on [a,b][a,b], xi[a,b]x_i \in [a,b], and ti=1\sum t_i = 1 with ti>0t_i > 0:

f(i=1ntixi)i=1ntif(xi)f\left(\sum_{i=1}^n t_i x_i\right) \leq \sum_{i=1}^n t_i f(x_i)
Proof of Theorem 4.21 (Convexity Test):

Suppose f0f'' \geq 0. For any x1<x2x_1 < x_2 and t(0,1)t \in (0, 1), let x=tx1+(1t)x2x = tx_1 + (1-t)x_2.

By Taylor with Lagrange remainder around xx:

f(x1)=f(x)+f(x)(x1x)+f(ξ1)2(x1x)2f(x_1) = f(x) + f'(x)(x_1 - x) + \frac{f''(\xi_1)}{2}(x_1 - x)^2
f(x2)=f(x)+f(x)(x2x)+f(ξ2)2(x2x)2f(x_2) = f(x) + f'(x)(x_2 - x) + \frac{f''(\xi_2)}{2}(x_2 - x)^2

Since f0f'' \geq 0, both remainder terms are 0\geq 0.

Computing tf(x1)+(1t)f(x2)tf(x_1) + (1-t)f(x_2) and using t(x1x)+(1t)(x2x)=0t(x_1 - x) + (1-t)(x_2 - x) = 0:

tf(x1)+(1t)f(x2)f(x)=f(tx1+(1t)x2)tf(x_1) + (1-t)f(x_2) \geq f(x) = f(tx_1 + (1-t)x_2)
Remark 4.2: Geometric Interpretation of Convexity

Convex (concave up)

  • • Graph lies below chords
  • • Graph lies above tangent lines
  • f0f'' \geq 0
  • • "Holds water"

Concave (concave down)

  • • Graph lies above chords
  • • Graph lies below tangent lines
  • f0f'' \leq 0
  • • "Spills water"
Example 4.19: Testing Convexity

Problem: Determine the convexity of f(x)=x33xf(x) = x^3 - 3x.

Solution:

f(x)=3x23f'(x) = 3x^2 - 3, f(x)=6xf''(x) = 6x.

  • x<0x < 0: f(x)<0f''(x) < 0 (concave)
  • x>0x > 0: f(x)>0f''(x) > 0 (convex)

Inflection point at x=0x = 0.

Example 4.19b: Proving AM-GM Using Jensen

Problem: Prove x1+x2++xnnx1x2xnn\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_n} for positive xix_i.

Solution:

Let f(x)=lnxf(x) = -\ln x (convex since f(x)=1/x2>0f''(x) = 1/x^2 > 0).

By Jensen with ti=1/nt_i = 1/n:

ln(x1++xnn)1ni=1n(lnxi)-\ln\left(\frac{x_1 + \cdots + x_n}{n}\right) \leq \frac{1}{n}\sum_{i=1}^n (-\ln x_i)
ln(x1++xnn)1nln(x1xn)=lnx1xnn\ln\left(\frac{x_1 + \cdots + x_n}{n}\right) \geq \frac{1}{n}\ln(x_1 \cdots x_n) = \ln\sqrt[n]{x_1 \cdots x_n}

Exponentiating: AMGM\text{AM} \geq \text{GM}.

Corollary 4.8: Common Convex/Concave Functions

Convex Functions

  • exe^x
  • xnx^n for n2n \geq 2, x0x \geq 0
  • xp|x|^p for p1p \geq 1
  • lnx-\ln x for x>0x > 0

Concave Functions

  • lnx\ln x for x>0x > 0
  • x\sqrt{x} for x0x \geq 0
  • sinx\sin x on [0,π][0, \pi]
  • xpx^p for 0<p<10 < p < 1, x>0x > 0
Example 4.19c: Young's Inequality

Result: For a,b>0a, b > 0 and 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1 (p,q>1p, q > 1):

abapp+bqqab \leq \frac{a^p}{p} + \frac{b^q}{q}

This follows from the convexity of exe^x applied to 1plnap+1qlnbq\frac{1}{p}\ln a^p + \frac{1}{q}\ln b^q.

3. Inflection Points

Definition 4.6: Inflection Point

A point (x0,f(x0))(x_0, f(x_0)) is an inflection point if ff changes concavity at x0x_0 (from convex to concave or vice versa).

Theorem 4.23: Inflection Point Criteria

Necessary condition: If (x0,f(x0))(x_0, f(x_0)) is an inflection point and f(x0)f''(x_0) exists, then f(x0)=0f''(x_0) = 0.

Sufficient condition: If f(x0)=0f''(x_0) = 0 and f(x0)0f'''(x_0) \neq 0, then (x0,f(x0))(x_0, f(x_0)) is an inflection point.

Example 4.20: Finding Inflection Points

Problem: Find all inflection points of f(x)=x46x2+8x+1f(x) = x^4 - 6x^2 + 8x + 1.

Solution:

f(x)=4x312x+8f'(x) = 4x^3 - 12x + 8

f(x)=12x212=12(x21)=12(x1)(x+1)f''(x) = 12x^2 - 12 = 12(x^2 - 1) = 12(x-1)(x+1)

f(x)=0f''(x) = 0 at x=±1x = \pm 1.

Sign analysis of ff'':

  • x<1x < -1: f>0f'' > 0 (convex)
  • 1<x<1-1 < x < 1: f<0f'' < 0 (concave)
  • x>1x > 1: f>0f'' > 0 (convex)

Inflection points at (1,f(1))(-1, f(-1)) and (1,f(1))(1, f(1)).

Example 4.20b: When f'' = 0 is NOT an Inflection

Problem: Check if f(x)=x4f(x) = x^4 has an inflection point at x=0x = 0.

Solution:

f(x)=12x2f''(x) = 12x^2, so f(0)=0f''(0) = 0.

But f(x)0f''(x) \geq 0 for all xx — no sign change!

x=0x = 0 is NOT an inflection point; it's a local minimum.

Remark 4.3b: Inflection Point Summary

To find inflection points:

  1. Find where f(x)=0f''(x) = 0 or ff'' is undefined
  2. Check if ff'' changes sign at each candidate
  3. Calculate f(x0)f(x_0) to get the full point (x0,f(x0))(x_0, f(x_0))

4. Asymptotes

Definition 4.7: Types of Asymptotes
  • Vertical: x=ax = a if limxaf(x)=±\lim_{x \to a} f(x) = \pm\infty
  • Horizontal: y=Ly = L if limx±f(x)=L\lim_{x \to \pm\infty} f(x) = L
  • Oblique: y=kx+by = kx + b if limx±[f(x)(kx+b)]=0\lim_{x \to \pm\infty} [f(x) - (kx + b)] = 0
Remark 4.3: Finding Oblique Asymptotes

For oblique asymptote y=kx+by = kx + b:

k=limxf(x)x,b=limx[f(x)kx]k = \lim_{x \to \infty} \frac{f(x)}{x}, \quad b = \lim_{x \to \infty} [f(x) - kx]
Example 4.17: Graphing with All Tools

Sketch f(x)=x31x2f(x) = \frac{x^3 - 1}{x^2}.

  1. Domain: x0x \neq 0
  2. Vertical asymptote: x=0x = 0
  3. Oblique asymptote: k=limx31x3=1k = \lim \frac{x^3-1}{x^3} = 1, b=lim(x1/x2x)=0b = \lim (x - 1/x^2 - x) = 0, so y=xy = x
  4. Derivative: f(x)=1+2/x3f'(x) = 1 + 2/x^3
  5. Critical point: x=23x = -\sqrt[3]{2}
Example 4.21: Finding All Asymptotes

Problem: Find all asymptotes of f(x)=x21x2f(x) = \frac{x^2 - 1}{x - 2}.

Solution:

Vertical: limx2±f(x)=±\lim_{x \to 2^\pm} f(x) = \pm\infty, so x=2x = 2 is vertical asymptote.

Oblique: k=limxx21x(x2)=limx2x2=1k = \lim_{x \to \infty} \frac{x^2 - 1}{x(x-2)} = \lim \frac{x^2}{x^2} = 1

b=limx(x21x2x)=limx21x(x2)x2=lim2x1x2=2b = \lim_{x \to \infty} \left(\frac{x^2-1}{x-2} - x\right) = \lim \frac{x^2 - 1 - x(x-2)}{x-2} = \lim \frac{2x - 1}{x - 2} = 2

Vertical: x=2x = 2. Oblique: y=x+2y = x + 2.

Remark 4.4: Asymptote Decision Tree
  1. Vertical asymptotes: Check where denominator = 0
  2. Horizontal asymptotes: Compute limx±f(x)\lim_{x \to \pm\infty} f(x)
  3. If no horizontal asymptote, check for oblique: Compute k=limf(x)/xk = \lim f(x)/x and b=lim(f(x)kx)b = \lim (f(x) - kx)
Example 4.21b: Rational Function Graphing

Problem: Complete graph analysis for f(x)=x2x24f(x) = \frac{x^2}{x^2 - 4}.

Solution:

Domain: x±2x \neq \pm 2

Symmetry: f(x)=f(x)f(-x) = f(x) (even function)

Intercepts: (0,0)(0, 0)

Vertical asymptotes: x=±2x = \pm 2

Horizontal asymptote: limxx2x24=1\lim_{x \to \infty} \frac{x^2}{x^2 - 4} = 1, so y=1y = 1

Monotonicity: f(x)=8x(x24)2f'(x) = \frac{-8x}{(x^2-4)^2}

  • x<0x < 0: f>0f' > 0 (increasing)
  • x>0x > 0: f<0f' < 0 (decreasing)
  • • Local max at x=0x = 0: f(0)=0f(0) = 0

5. Complete Curve Sketching

Remark 4.5: Curve Sketching Checklist

Steps for Complete Analysis:

  1. Domain: Where is ff defined?
  2. Symmetry: Even (f(x)=f(x)f(-x) = f(x))? Odd (f(x)=f(x)f(-x) = -f(x))?
  3. Intercepts: Where does graph cross axes?
  4. Asymptotes: Vertical, horizontal, oblique?
  5. First derivative: Critical points, monotonicity, local extrema
  6. Second derivative: Convexity, inflection points
  7. Sketch: Combine all information
Example 4.22: Complete Analysis: e^(-x²)

Problem: Sketch f(x)=ex2f(x) = e^{-x^2} (Gaussian function).

Solution:

  1. Domain: R\mathbb{R}
  2. Symmetry: Even (symmetric about y-axis)
  3. Range: (0,1](0, 1]
  4. Horizontal asymptote: y=0y = 0 as x±x \to \pm\infty
  5. First derivative: f(x)=2xex2f'(x) = -2xe^{-x^2}
    • f(x)=0f'(x) = 0 at x=0x = 0
    • f>0f' > 0 for x<0x < 0, f<0f' < 0 for x>0x > 0
    • • Global max at x=0x = 0: f(0)=1f(0) = 1
  6. Second derivative: f(x)=(4x22)ex2f''(x) = (4x^2 - 2)e^{-x^2}
    • f(x)=0f''(x) = 0 at x=±1/2x = \pm 1/\sqrt{2}
    • • Inflection points at x=±1/2x = \pm 1/\sqrt{2}
Example 4.22b: Complete Analysis: x ln x

Problem: Sketch f(x)=xlnxf(x) = x \ln x for x>0x > 0.

Solution:

  1. Domain: (0,)(0, \infty)
  2. Behavior at 0: limx0+xlnx=0\lim_{x \to 0^+} x \ln x = 0
  3. First derivative: f(x)=lnx+1f'(x) = \ln x + 1
    • f(x)=0f'(x) = 0 at x=1/ex = 1/e
    • • Local min at x=1/ex = 1/e: f(1/e)=1/ef(1/e) = -1/e
  4. Second derivative: f(x)=1/x>0f''(x) = 1/x > 0 for all x>0x > 0 (convex)
Example 4.22c: Complete Analysis: xe^(-x)

Problem: Sketch f(x)=xexf(x) = xe^{-x}.

Solution:

  1. Domain: R\mathbb{R}
  2. Intercepts: (0,0)(0, 0)
  3. Limits: limx=\lim_{x \to -\infty} = -\infty, limx=0\lim_{x \to \infty} = 0
  4. First derivative: f(x)=ex(1x)f'(x) = e^{-x}(1 - x)
    • f(x)=0f'(x) = 0 at x=1x = 1
    • • Global max at x=1x = 1: f(1)=1/ef(1) = 1/e
  5. Second derivative: f(x)=ex(x2)f''(x) = e^{-x}(x - 2)
    • • Inflection point at x=2x = 2
Example 4.22d: Rational Function Analysis

Problem: Sketch f(x)=xx2+1f(x) = \frac{x}{x^2 + 1}.

Solution:

  1. Domain: R\mathbb{R}
  2. Symmetry: Odd function (f(x)=f(x)f(-x) = -f(x))
  3. Intercepts: (0,0)(0, 0)
  4. Horizontal asymptote: y=0y = 0
  5. First derivative: f(x)=1x2(x2+1)2f'(x) = \frac{1 - x^2}{(x^2+1)^2}
    • • Critical points: x=±1x = \pm 1
    • • Local max at x=1x = 1: f(1)=1/2f(1) = 1/2
    • • Local min at x=1x = -1: f(1)=1/2f(-1) = -1/2
Remark 4.5b: Signs Table Template

How to organize analysis:

Intervalf(x)f'(x)f(x)f''(x)Behavior
(a,c1)(a, c_1)++↗ convex
(c1,c2)(c_1, c_2)+↘ convex
............

6. Optimization Problems

Example 4.23: Box with Maximum Volume

Problem: An open box is made from a 12×12 square by cutting squares of side xx from corners. Find xx for maximum volume.

Solution:

Volume: V(x)=x(122x)2V(x) = x(12 - 2x)^2 for x[0,6]x \in [0, 6].

V(x)=x(14448x+4x2)=4x348x2+144xV(x) = x(144 - 48x + 4x^2) = 4x^3 - 48x^2 + 144x

V(x)=12x296x+144=12(x28x+12)=12(x2)(x6)V'(x) = 12x^2 - 96x + 144 = 12(x^2 - 8x + 12) = 12(x-2)(x-6)

Critical points: x=2,6x = 2, 6. Since V(0)=V(6)=0V(0) = V(6) = 0:

Answer: x=2x = 2 gives max volume V(2)=264=128V(2) = 2 \cdot 64 = 128 cubic units.

Example 4.23b: Minimum Distance

Problem: Find the point on y=x2y = x^2 closest to (0,1)(0, 1).

Solution:

Distance squared: D(x)=x2+(x21)2D(x) = x^2 + (x^2 - 1)^2

D(x)=2x+2(x21)(2x)=2x(1+2x22)=2x(2x21)D'(x) = 2x + 2(x^2 - 1)(2x) = 2x(1 + 2x^2 - 2) = 2x(2x^2 - 1)

D(x)=0D'(x) = 0 at x=0x = 0 or x=±1/2x = \pm 1/\sqrt{2}.

Comparing: D(0)=1D(0) = 1, D(±1/2)=1/2+1/4=3/4D(\pm 1/\sqrt{2}) = 1/2 + 1/4 = 3/4.

Answer: Closest points are (±1/2,1/2)(\pm 1/\sqrt{2}, 1/2).

Example 4.23c: Economics: Maximizing Profit

Problem: Revenue R(q)=100qq2R(q) = 100q - q^2, Cost C(q)=20+10qC(q) = 20 + 10q. Find quantity for max profit.

Solution:

Profit: P(q)=R(q)C(q)=100qq22010q=q2+90q20P(q) = R(q) - C(q) = 100q - q^2 - 20 - 10q = -q^2 + 90q - 20

P(q)=2q+90=0P'(q) = -2q + 90 = 0 gives q=45q = 45.

P(q)=2<0P''(q) = -2 < 0, so this is a maximum.

Answer: Max profit at q=45q = 45 units: P(45)=2005P(45) = 2005.

Example 4.23d: Cylinder with Maximum Volume

Problem: A cylinder has surface area 100 cm². Find dimensions for maximum volume.

Solution:

Surface: 2πr2+2πrh=1002\pi r^2 + 2\pi rh = 100, so h=1002πr22πr=50πrrh = \frac{100 - 2\pi r^2}{2\pi r} = \frac{50}{\pi r} - r.

Volume: V=πr2h=πr2(50πrr)=50rπr3V = \pi r^2 h = \pi r^2 \left(\frac{50}{\pi r} - r\right) = 50r - \pi r^3

V(r)=503πr2=0V'(r) = 50 - 3\pi r^2 = 0 gives r=503πr = \sqrt{\frac{50}{3\pi}}.

Answer: r=503π2.3r = \sqrt{\frac{50}{3\pi}} \approx 2.3 cm, h=2r4.6h = 2r \approx 4.6 cm.

Remark 4.6: Optimization Strategy

General Approach:

  1. Draw a diagram and label variables
  2. Identify the quantity to optimize (objective function)
  3. Find constraints relating variables
  4. Express objective in terms of one variable
  5. Find domain of the resulting function
  6. Apply calculus: find critical points, test for max/min
  7. Check endpoints if domain is closed
  8. Verify the answer makes sense
Example 4.23e: Least Material for a Can

Problem: Design a cylindrical can holding 1000 cm³ using minimum material.

Solution:

Volume: V=πr2h=1000V = \pi r^2 h = 1000, so h=1000πr2h = \frac{1000}{\pi r^2}.

Surface: S=2πr2+2πrh=2πr2+2000rS = 2\pi r^2 + 2\pi rh = 2\pi r^2 + \frac{2000}{r}

S(r)=4πr2000r2=0S'(r) = 4\pi r - \frac{2000}{r^2} = 0 gives r3=500πr^3 = \frac{500}{\pi}.

r=500π35.42r = \sqrt[3]{\frac{500}{\pi}} \approx 5.42 cm.

Answer: Optimal when h=2rh = 2r (height = diameter).

Example 4.23f: Related Rates Application

Problem: Water fills a conical tank (r = 3m, h = 6m at top) at 2 m³/min. How fast is water level rising when h = 3m?

Solution:

Similar triangles: rh=36=12\frac{r}{h} = \frac{3}{6} = \frac{1}{2}, so r=h2r = \frac{h}{2}.

Volume: V=13πr2h=πh312V = \frac{1}{3}\pi r^2 h = \frac{\pi h^3}{12}

Differentiate: dVdt=πh24dhdt\frac{dV}{dt} = \frac{\pi h^2}{4} \cdot \frac{dh}{dt}

At h=3h = 3: 2=9π4dhdt2 = \frac{9\pi}{4} \cdot \frac{dh}{dt}

Answer: dhdt=89π0.28\frac{dh}{dt} = \frac{8}{9\pi} \approx 0.28 m/min.

7. Important Inequalities via Convexity

Theorem 4.24: Hölder's Inequality

For p,q>1p, q > 1 with 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1:

i=1naibi(i=1naip)1/p(i=1nbiq)1/q\sum_{i=1}^n |a_i b_i| \leq \left(\sum_{i=1}^n |a_i|^p\right)^{1/p} \left(\sum_{i=1}^n |b_i|^q\right)^{1/q}

Special case: p=q=2p = q = 2 gives Cauchy-Schwarz.

Corollary 4.9: Cauchy-Schwarz Inequality
(i=1naibi)2(i=1nai2)(i=1nbi2)\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)
Example 4.24: Proving Cauchy-Schwarz

Method: Use the convexity of f(x)=x2f(x) = x^2.

Consider P(t)=(ai+tbi)20P(t) = \sum (a_i + t b_i)^2 \geq 0 for all tt.

Expanding: P(t)=At2+2Bt+C0P(t) = At^2 + 2Bt + C \geq 0 where

A=bi2,B=aibi,C=ai2A = \sum b_i^2, \quad B = \sum a_i b_i, \quad C = \sum a_i^2

Discriminant 0\leq 0: 4B24AC04B^2 - 4AC \leq 0, so B2ACB^2 \leq AC.

Remark 4.7: Applications of These Inequalities

In Analysis

  • • Proving convergence of series
  • • Bounding integrals
  • • L^p space theory

In Applications

  • • Machine learning (regularization)
  • • Signal processing
  • • Economics (utility functions)
Example 4.24b: Using AM-GM in Optimization

Problem: Find the minimum of f(x)=x+4xf(x) = x + \frac{4}{x} for x>0x > 0.

Solution (Two Methods):

Method 1 (Calculus): f(x)=14/x2=0f'(x) = 1 - 4/x^2 = 0 gives x=2x = 2. Min = 4.

Method 2 (AM-GM): x+4/x2x4/x=2\frac{x + 4/x}{2} \geq \sqrt{x \cdot 4/x} = 2

So x+4/x4x + 4/x \geq 4, equality when x=4/xx = 4/x, i.e., x=2x = 2.

Example 4.24c: Power Mean Inequality

Result: For positive aia_i and r<sr < s:

(a1r++anrn)1/r(a1s++ansn)1/s\left(\frac{a_1^r + \cdots + a_n^r}{n}\right)^{1/r} \leq \left(\frac{a_1^s + \cdots + a_n^s}{n}\right)^{1/s}

Special cases: r0r \to 0 gives GM, r=1r = 1 gives AM, r=2r = 2 gives QM.

Corollary 4.10: QM-AM-GM-HM Chain
ai2nainainn1/ai\sqrt{\frac{\sum a_i^2}{n}} \geq \frac{\sum a_i}{n} \geq \sqrt[n]{\prod a_i} \geq \frac{n}{\sum 1/a_i}

Quadratic Mean ≥ Arithmetic Mean ≥ Geometric Mean ≥ Harmonic Mean

Remark 4.8: Historical Note

Jensen's inequality (1906) is named after Danish mathematician Johan Jensen. It provides a unified framework for proving many classical inequalities including AM-GM, Cauchy-Schwarz, and Hölder's inequality, all through the concept of convexity.

Example 4.24d: Minkowski's Inequality

Result: For p1p \geq 1:

(i=1nai+bip)1/p(i=1naip)1/p+(i=1nbip)1/p\left(\sum_{i=1}^n |a_i + b_i|^p\right)^{1/p} \leq \left(\sum_{i=1}^n |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^n |b_i|^p\right)^{1/p}

This is the triangle inequality in LpL^p space. For p=2p = 2, it gives the familiar a+ba+b\|a + b\| \leq \|a\| + \|b\|.

Remark 4.9: Summary: Key Inequalities
InequalityStatement
AM-GMa+b2ab\frac{a+b}{2} \geq \sqrt{ab}
Cauchy-Schwarz(aibi)2(ai2)(bi2)(\sum a_i b_i)^2 \leq (\sum a_i^2)(\sum b_i^2)
Youngabapp+bqqab \leq \frac{a^p}{p} + \frac{b^q}{q}
Jensenf(E[X])E[f(X)]f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] (convex ff)

Historical Context

The systematic study of optimization using calculus began with Fermat and Newton in the 17th century. The theory of convex functions was developed by Jensen, Minkowski, and others in the early 20th century, becoming fundamental to modern optimization, economics, and machine learning.

Applications Practice
14
Questions
0
Correct
0%
Accuracy
1
If f(x)>0f'(x) > 0 for all x(a,b)x \in (a, b), then ff is:
Easy
Not attempted
2
If f(x)>0f''(x) > 0 on (a,b)(a, b), then ff is:
Easy
Not attempted
3
At an inflection point, we must have:
Medium
Not attempted
4
For f(x)=x3f(x) = x^3, classify x=0x = 0:
Medium
Not attempted
5
If limxf(x)=L\lim_{x \to \infty} f(x) = L (finite), then y=Ly = L is:
Easy
Not attempted
6
The second derivative test says: if f(x0)=0f'(x_0) = 0 and f(x0)<0f''(x_0) < 0, then:
Easy
Not attempted
7
For oblique asymptote y=kx+by = kx + b, how do we find kk?
Medium
Not attempted
8
Jensen's inequality for convex ff: if ti=1\sum t_i = 1 (ti>0t_i > 0), then:
Hard
Not attempted
9
For f(x)=x33xf(x) = x^3 - 3x, the local maximum occurs at:
Medium
Not attempted
10
A function is concave on an interval if:
Easy
Not attempted
11
The AM-GM inequality can be proved using Jensen's inequality with:
Hard
Not attempted
12
For curve sketching, the first step should be:
Easy
Not attempted
13
If f(x0)=0f'(x_0) = 0, f(x0)=0f''(x_0) = 0, and f(x0)0f'''(x_0) \neq 0, then x0x_0 is:
Medium
Not attempted
14
To maximize area with fixed perimeter, the optimal shape is:
Medium
Not attempted

Frequently Asked Questions

How do I determine if a critical point is max, min, or neither?

Use the first derivative test (check sign change of f') or second derivative test (check sign of f''). If f'(x₀)=0 and f''(x₀)=0, use higher derivatives or first derivative test.

What's the difference between local and global extrema?

Local extrema compare values in a neighborhood; global extrema are the absolute max/min over the entire domain. A local extremum may not be global.

How do inflection points relate to convexity?

Inflection points are where the function changes from convex to concave (or vice versa). At such points, f'' = 0 and f'' changes sign.

When should I use asymptotes in graphing?

Always check for vertical asymptotes (where f → ±∞), horizontal asymptotes (behavior at ±∞), and oblique asymptotes (when f(x)/x → k ≠ 0 as x → ∞).

What's the difference between convex and concave?

Convex (concave up): f'' ≥ 0, graph holds water, lies below chords. Concave (concave down): f'' ≤ 0, graph spills water, lies above chords.

How do I apply Jensen's inequality?

For convex f: f(weighted average) ≤ weighted average of f. For concave f: reverse the inequality. The weights must sum to 1.

When is the second derivative test inconclusive?

When f'(x₀) = 0 and f''(x₀) = 0. Then use the first derivative test or check higher derivatives.

How do I find oblique asymptotes?

Compute k = lim(x→∞) f(x)/x and b = lim(x→∞) [f(x) - kx]. If both limits exist and k ≠ 0, y = kx + b is an oblique asymptote.

Can a function have both horizontal and oblique asymptotes?

Not in the same direction. At each of ±∞, a function can have at most one asymptote (horizontal or oblique).

How do optimization problems work?

1) Identify the quantity to optimize. 2) Express it as a function of one variable. 3) Find critical points. 4) Use derivative tests to classify. 5) Check boundary conditions.

Key Takeaways

Monotonicity

f>0f' > 0 \Rightarrow increasing; f<0f' < 0 \Rightarrow decreasing

Convexity

f>0f'' > 0 \Rightarrow convex; f<0f'' < 0 \Rightarrow concave

Extrema Tests

First derivative: sign change. Second derivative: sign at critical point.

Inflection Points

f=0f'' = 0 and ff'' changes sign

Study Tips

Sign Charts

Always make a sign chart for ff' and ff''. Mark critical points and test intervals.

Check Endpoints

For global extrema on closed intervals, always evaluate at endpoints too.

Optimization Strategy

Express everything in one variable, find the domain, then apply calculus.

Asymptotes First

When graphing, find asymptotes early — they guide the overall shape.

Common Mistakes to Avoid

  • Assuming f'(x₀) = 0 is sufficient for extremum

    It's necessary, not sufficient. Check sign change or second derivative.

  • Confusing f''(x₀) = 0 with inflection point

    f'' must also change sign at an inflection point.

  • Forgetting to check domain boundaries

    Global extrema may occur at endpoints, not just critical points.

  • Mixing up convex and concave

    Remember: convex = "holds water" = f'' > 0.

Chapter 4 Complete!

Congratulations! You've mastered the fundamentals of differentiation:

  • Definition of Derivative: Limits, differentiability, basic rules
  • Chain Rule: Composite functions, implicit differentiation
  • Mean Value Theorems: Rolle, Lagrange, Cauchy
  • L'Hospital & Taylor: Limits, series expansions
  • Applications: Extrema, convexity, graphing, optimization

You can now continue to Chapter 5: Integration (coming soon).