MathIsimple
π
θ
Δ
ε
Home/Calculus/Chapter 4/L'Hospital & Taylor
CALC-4.4
5-6 hours

L'Hospital's Rule and Taylor's Theorem

Master powerful techniques for evaluating limits and approximating functions: L'Hospital's rule for indeterminate forms and Taylor's theorem for polynomial approximations.

Learning Objectives
Apply L'Hospital's rule for 0/0 and ∞/∞ indeterminate forms
Convert other indeterminate forms to apply L'Hospital's rule
Understand Taylor's theorem with Peano remainder
Apply Taylor's theorem with Lagrange remainder for error bounds
Use Cauchy's remainder form in special cases
Compute Taylor expansions of standard functions
Use Taylor expansions to evaluate limits
Apply Taylor expansions to approximate function values

1. L'Hospital's Rule

Theorem 4.13: L'Hospital's Rule (0/0 form)

Suppose limxaf(x)=limxag(x)=0\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0, and g(x)0g'(x) \neq 0 near aa. If limxaf(x)g(x)\lim_{x \to a} \frac{f'(x)}{g'(x)} exists (or is ±\pm\infty), then:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
Theorem 4.14: L'Hospital's Rule (∞/∞ form)

The same conclusion holds when limxaf(x)=limxag(x)=±\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm\infty.

Example 4.13: Basic Application

Evaluate limx0ex1x\lim_{x \to 0} \frac{e^x - 1}{x}.

This is 00\frac{0}{0} form. Apply L'Hospital's rule:

limx0ex1x=limx0ex1=e0=1\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = e^0 = 1
Example 4.14: Converting Other Forms

Evaluate limx0+xlnx\lim_{x \to 0^+} x \ln x (0()0 \cdot (-\infty) form).

Rewrite as lnx1/x\frac{\ln x}{1/x} (\frac{-\infty}{\infty} form):

limx0+lnx1/x=limx0+1/x1/x2=limx0+(x)=0\lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0
Proof of Theorem 4.13 (L'Hospital's Rule - 0/0 case):

Using Cauchy's Mean Value Theorem:

For xax \neq a, there exists ξ\xi between aa and xx such that:

f(x)f(a)g(x)g(a)=f(ξ)g(ξ)\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}

Since f(a)=g(a)=0f(a) = g(a) = 0:

f(x)g(x)=f(ξ)g(ξ)\frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}

As xax \to a, ξa\xi \to a, so if limxaf(x)g(x)=L\lim_{x \to a}\frac{f'(x)}{g'(x)} = L exists, the limit equals LL.

Remark 4.1: Indeterminate Forms

L'Hospital's rule applies directly to:

00\frac{0}{0}
\frac{\infty}{\infty}
00 \cdot \infty (convert)
\infty - \infty (convert)

For exponential forms 000^0, 11^\infty, 0\infty^0, take logarithms first.

Example 4.14b: Repeated Application

Problem: Evaluate limx0ex1xx22x3\lim_{x \to 0} \frac{e^x - 1 - x - \frac{x^2}{2}}{x^3}.

Solution:

This is 00\frac{0}{0}. Apply L'Hospital's three times:

limex1x3x2=limex16x=limex6=16\lim \frac{e^x - 1 - x}{3x^2} = \lim \frac{e^x - 1}{6x} = \lim \frac{e^x}{6} = \frac{1}{6}
Example 4.14c: ∞ - ∞ Form

Problem: Evaluate limx0(1x1sinx)\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right).

Solution:

Combine fractions: sinxxxsinx\frac{\sin x - x}{x \sin x} (now 00\frac{0}{0})

limsinxxxsinx=limcosx1sinx+xcosx=limsinx2cosxxsinx=02=0\lim \frac{\sin x - x}{x \sin x} = \lim \frac{\cos x - 1}{\sin x + x\cos x} = \lim \frac{-\sin x}{2\cos x - x\sin x} = \frac{0}{2} = 0
Example 4.14d: 1^∞ Form

Problem: Evaluate limx0(1+x)1/x\lim_{x \to 0} (1 + x)^{1/x}.

Solution:

Let y=(1+x)1/xy = (1 + x)^{1/x}. Then lny=ln(1+x)x\ln y = \frac{\ln(1 + x)}{x}.

limx0ln(1+x)x=limx01/(1+x)1=1\lim_{x \to 0} \frac{\ln(1 + x)}{x} = \lim_{x \to 0} \frac{1/(1+x)}{1} = 1

Therefore limy=e1=e\lim y = e^1 = e.

Example 4.14e: 0^0 Form

Problem: Evaluate limx0+xx\lim_{x \to 0^+} x^x.

Solution:

Let y=xxy = x^x. Then lny=xlnx\ln y = x \ln x.

We showed limx0+xlnx=0\lim_{x \to 0^+} x \ln x = 0 earlier.

Therefore limy=e0=1\lim y = e^0 = 1.

Remark 4.1b: When L'Hospital's Rule Fails

Be careful! L'Hospital's rule can fail when:

  • The limit of derivatives doesn't exist (but the original limit might!)
  • Applying it leads to more complex expressions
  • It's applied to a non-indeterminate form

Classic Failure Example:

limxxx2+1=limx1xx2+1 (circular!)\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{1}{\frac{x}{\sqrt{x^2+1}}} \text{ (circular!)}

The correct answer is 1 (divide by xx).

Example 4.14f: L'Hospital at Infinity

Problem: Evaluate limxlnxx\lim_{x \to \infty} \frac{\ln x}{x}.

Solution:

This is \frac{\infty}{\infty}. Apply L'Hospital's:

limxlnxx=limx1/x1=0\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0

This shows: polynomials grow faster than logarithms.

Example 4.14g: Exponential vs Polynomial

Problem: Evaluate limxxnex\lim_{x \to \infty} \frac{x^n}{e^x} for any nNn \in \mathbb{N}.

Solution:

Apply L'Hospital's nn times:

limxnex=limnxn1ex==limn!ex=0\lim \frac{x^n}{e^x} = \lim \frac{nx^{n-1}}{e^x} = \cdots = \lim \frac{n!}{e^x} = 0

This shows: exponentials grow faster than any polynomial.

Example 4.14h: ∞^0 Form

Problem: Evaluate limxx1/x\lim_{x \to \infty} x^{1/x}.

Solution:

Let y=x1/xy = x^{1/x}. Then lny=lnxx\ln y = \frac{\ln x}{x}.

limxlnxx=limx1/x1=0\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0

Therefore limy=e0=1\lim y = e^0 = 1.

Remark 4.1c: Growth Rate Hierarchy

As xx \to \infty, growth rates from slowest to fastest:

lnxxαexex2xx\ln x \ll x^\alpha \ll e^x \ll e^{x^2} \ll x^x

Here fgf \ll g means limf/g=0\lim f/g = 0.

Example 4.14i: Composite Function Limit

Problem: Evaluate limx0+(sinx)tanx\lim_{x \to 0^+} (\sin x)^{\tan x}.

Solution:

This is 000^0 form. Let y=(sinx)tanxy = (\sin x)^{\tan x}.

lny=tanxln(sinx)=ln(sinx)cotx\ln y = \tan x \cdot \ln(\sin x) = \frac{\ln(\sin x)}{\cot x}

As x0+x \to 0^+: +\frac{-\infty}{+\infty}. Apply L'Hospital:

limcosx/sinxcsc2x=limcosxsinx1=0\lim \frac{\cos x / \sin x}{-\csc^2 x} = \lim \frac{\cos x \sin x}{-1} = 0

Therefore limy=e0=1\lim y = e^0 = 1.

Example 4.14j: A Tricky Limit

Problem: Evaluate limx0exesinxxsinx\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}.

Solution:

Both numerator and denominator 0\to 0 as x0x \to 0.

limexesinxxsinx=limexesinxcosx1cosx\lim \frac{e^x - e^{\sin x}}{x - \sin x} = \lim \frac{e^x - e^{\sin x} \cos x}{1 - \cos x}

Still 00\frac{0}{0}. Apply again:

=limexesinx(cos2xsinx)sinx= \lim \frac{e^x - e^{\sin x}(\cos^2 x - \sin x)}{\sin x}

At x=0x = 0: numerator =11=0= 1 - 1 = 0. Continue or use Taylor:

Using Taylor: exesinx=ex(1esinxx)(sinxx)=x36+o(x3)e^x - e^{\sin x} = e^x(1 - e^{\sin x - x}) \approx -(\sin x - x) = \frac{x^3}{6} + o(x^3)

And xsinx=x36+o(x3)x - \sin x = \frac{x^3}{6} + o(x^3). So limit = 1.

2. Taylor's Theorem

Theorem 4.15: Taylor's Theorem (Peano Remainder)

If ff has nn derivatives at x0x_0, then:

f(x)=k=0nf(k)(x0)k!(xx0)k+o((xx0)n)f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + o((x-x_0)^n)
Theorem 4.16: Taylor's Theorem (Lagrange Remainder)

If fCn[a,b]Dn+1(a,b)f \in C^n[a,b] \cap D^{n+1}(a,b), then for any x,x0[a,b]x, x_0 \in [a,b], there exists ξ\xi between xx and x0x_0:

Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
Theorem 4.17: Taylor's Theorem (Cauchy Remainder)

Under the same conditions, there exists θ(0,1)\theta \in (0, 1):

Rn(x)=f(n+1)(x0+θ(xx0))n!(1θ)n(xx0)n+1R_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x-x_0))}{n!}(1-\theta)^n(x-x_0)^{n+1}
Proof of Theorem 4.15 (Taylor's Theorem - Peano Form):

We prove by induction. For n=0n = 0:

f(x)=f(x0)+o(1)(by continuity)f(x) = f(x_0) + o(1) \quad \text{(by continuity)}

Assume true for n1n-1. Define Rn(x)=f(x)k=0nf(k)(x0)k!(xx0)kR_n(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k.

We need to show Rn(x)=o((xx0)n)R_n(x) = o((x-x_0)^n).

Apply L'Hospital's rule:

limxx0Rn(x)(xx0)n=limxx0Rn(x)n(xx0)n1\lim_{x \to x_0} \frac{R_n(x)}{(x-x_0)^n} = \lim_{x \to x_0} \frac{R_n'(x)}{n(x-x_0)^{n-1}}

Since Rn(x)R_n'(x) is the (n1)(n-1)-th Taylor remainder of ff', by induction, this limit is 0.

Remark 4.2: Comparing Remainder Forms

Peano Remainder

Rn=o((xx0)n)R_n = o((x-x_0)^n)

Best for limits; local behavior only

Lagrange Remainder

Rn=f(n+1)(ξ)(n+1)!hn+1R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}

Best for error bounds

Cauchy Remainder

Rn=f(n+1)(x0+θh)n!(1θ)nhn+1R_n = \frac{f^{(n+1)}(x_0+\theta h)}{n!}(1-\theta)^n h^{n+1}

Useful for special cases

Definition 4.5: Taylor Polynomial

The n-th Taylor polynomial of ff centered at x0x_0 is:

Tn(x)=k=0nf(k)(x0)k!(xx0)kT_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k

When x0=0x_0 = 0, this is called the Maclaurin polynomial.

Example 4.15b: Computing Taylor Polynomial

Problem: Find the 4th-degree Taylor polynomial of f(x)=exf(x) = e^x at x0=0x_0 = 0.

Solution:

For exe^x, all derivatives equal exe^x, so f(k)(0)=1f^{(k)}(0) = 1 for all kk.

T4(x)=1+x+x22!+x33!+x44!=1+x+x22+x36+x424T_4(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}
Example 4.15c: Taylor Polynomial for sin x

Problem: Find the 5th-degree Maclaurin polynomial of sinx\sin x.

Solution:

Derivatives at 0: sin0=0\sin 0 = 0, cos0=1\cos 0 = 1, sin0=0-\sin 0 = 0, cos0=1-\cos 0 = -1, ...

T5(x)=xx33!+x55!=xx36+x5120T_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} = x - \frac{x^3}{6} + \frac{x^5}{120}
Remark 4.2b: Why Taylor Expansions Work

Taylor's theorem tells us that smooth functions can be locally approximated by polynomials.

Key insight: The polynomial Tn(x)T_n(x) matches f(x)f(x) at x0x_0 in:

  • • Value: Tn(x0)=f(x0)T_n(x_0) = f(x_0)
  • • First derivative: Tn(x0)=f(x0)T_n'(x_0) = f'(x_0)
  • • All derivatives up to order n
Example 4.15d: Error Bound Example

Problem: Approximate sin(0.1)\sin(0.1) using the 3rd-degree Taylor polynomial and bound the error.

Solution:

T3(x)=xx36T_3(x) = x - \frac{x^3}{6}, so T3(0.1)=0.10.00160.09983T_3(0.1) = 0.1 - \frac{0.001}{6} \approx 0.09983.

Lagrange remainder: R3=f(4)(ξ)4!(0.1)4=sinξ24(0.0001)|R_3| = \left|\frac{f^{(4)}(\xi)}{4!}(0.1)^4\right| = \left|\frac{\sin\xi}{24}(0.0001)\right|

Since sinξ1|\sin\xi| \leq 1: R30.0001244.2×106|R_3| \leq \frac{0.0001}{24} \approx 4.2 \times 10^{-6}.

Corollary 4.5: Uniqueness of Taylor Polynomial

If Pn(x)P_n(x) is any polynomial of degree n\leq n such that f(x)Pn(x)=o((xx0)n)f(x) - P_n(x) = o((x-x_0)^n), then Pn=TnP_n = T_n.

Example 4.15e: Taylor with Lagrange Error

Problem: Approximate cos(0.1)\cos(0.1) using T2T_2 and bound the error.

Solution:

T2(x)=1x22T_2(x) = 1 - \frac{x^2}{2} for cosx\cos x.

T2(0.1)=10.012=0.995T_2(0.1) = 1 - \frac{0.01}{2} = 0.995

Lagrange remainder with f(3)(x)=sinxf^{(3)}(x) = \sin x:

R2=sinξ3!(0.1)30.00161.67×104|R_2| = \left|\frac{\sin \xi}{3!}(0.1)^3\right| \leq \frac{0.001}{6} \approx 1.67 \times 10^{-4}

Actual: cos(0.1)0.995004...\cos(0.1) \approx 0.995004...

Remark 4.2c: Choosing Between Remainder Forms

Use Peano When:

  • • Evaluating limits as xx0x \to x_0
  • • You only care about local behavior
  • • Precise error bound not needed

Use Lagrange When:

  • • You need an error bound
  • • Computing numerical approximations
  • • Proving inequalities
Example 4.15f: Higher-Order Taylor

Problem: Find T4T_4 for f(x)=ln(1+x)f(x) = \ln(1 + x) and estimate the error at x=0.5x = 0.5.

Solution:

T4(x)=xx22+x33x44T_4(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}

At x=0.5x = 0.5:

T4(0.5)=0.50.125+0.04170.01560.4011T_4(0.5) = 0.5 - 0.125 + 0.0417 - 0.0156 \approx 0.4011

Error bound using f(5)(ξ)=4!(1+ξ)524|f^{(5)}(\xi)| = \frac{4!}{(1+\xi)^5} \leq 24:

R4245!(0.5)5=240.03125120=0.00625|R_4| \leq \frac{24}{5!}(0.5)^5 = \frac{24 \cdot 0.03125}{120} = 0.00625

Actual: ln(1.5)0.4055\ln(1.5) \approx 0.4055. True error 0.0044\approx 0.0044.

Proof of Theorem 4.16 (Lagrange Remainder):

Define Rn(x)=f(x)Tn(x)R_n(x) = f(x) - T_n(x) and consider the auxiliary function:

ϕ(t)=f(x)Tn(x)Rn(x)(xx0)n+1(tx0)n+1\phi(t) = f(x) - T_n(x) - \frac{R_n(x)}{(x-x_0)^{n+1}}(t-x_0)^{n+1}

ϕ(x0)=0\phi(x_0) = 0 and ϕ(x)=0\phi(x) = 0.

By Rolle's theorem, ξ\exists \xi between x0x_0 and xx: ϕ(ξ)=0\phi'(\xi) = 0.

Computing ϕ(t)\phi'(t) and evaluating at t=ξt = \xi gives:

Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
Definition 4.6: Big-O and Little-o Notation

f(x)=O(g(x))f(x) = O(g(x)) as xax \to a means f(x)Mg(x)|f(x)| \leq M|g(x)| for some constant MM near aa.

f(x)=o(g(x))f(x) = o(g(x)) as xax \to a means limxaf(x)g(x)=0\lim_{x \to a} \frac{f(x)}{g(x)} = 0.

Example: sinx=x+O(x3)\sin x = x + O(x^3) means sinxx\sin x - x is bounded by a constant times x3x^3.

3. Standard Taylor Expansions

Maclaurin Series (x₀ = 0)
ex=1+x+x22!+x33!++xnn!+o(xn)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + o(x^n)
sinx=xx33!+x55!+(1)nx2n+1(2n+1)!+o(x2n+2)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + (-1)^n\frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})
cosx=1x22!+x44!+(1)nx2n(2n)!+o(x2n+1)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + (-1)^n\frac{x^{2n}}{(2n)!} + o(x^{2n+1})
ln(1+x)=xx22+x33+(1)n1xnn+o(xn)\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n-1}\frac{x^n}{n} + o(x^n)
(1+x)α=1+αx+α(α1)2!x2++(αn)xn+o(xn)(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots + \binom{\alpha}{n}x^n + o(x^n)
Example 4.15: Using Taylor for Limits

Evaluate limx0xsinxx3\lim_{x \to 0} \frac{x - \sin x}{x^3}.

Using sinx=xx36+o(x3)\sin x = x - \frac{x^3}{6} + o(x^3):

xsinxx3=x(xx36+o(x3))x3=x36+o(x3)x316\frac{x - \sin x}{x^3} = \frac{x - (x - \frac{x^3}{6} + o(x^3))}{x^3} = \frac{\frac{x^3}{6} + o(x^3)}{x^3} \to \frac{1}{6}
Example 4.16: Approximating e

Estimate ee with error less than 10510^{-5}.

Using e=e1=k=0n1k!+Rne = e^1 = \sum_{k=0}^n \frac{1}{k!} + R_n where Rn<e(n+1)!<3(n+1)!|R_n| < \frac{e}{(n+1)!} < \frac{3}{(n+1)!}.

For n=8n = 8: 39!8.3×106<105\frac{3}{9!} \approx 8.3 \times 10^{-6} < 10^{-5}.

ek=081k!=1+1+12+16++1403202.71828e \approx \sum_{k=0}^{8} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \cdots + \frac{1}{40320} \approx 2.71828
Remark 4.3: Deriving New Expansions from Known Ones

You can derive new Taylor expansions by:

  • Substitution: Replace xx with x2x^2, x-x, etc.
  • Differentiation: Differentiate term by term
  • Integration: Integrate term by term
  • Multiplication: Multiply two series
Example 4.16b: Expansion by Substitution

Problem: Find the Maclaurin expansion of ex2e^{-x^2}.

Solution:

Start with eu=1+u+u22!+u33!+e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots

Substitute u=x2u = -x^2:

ex2=1x2+x42!x63!+=n=0(1)nx2nn!e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}
Example 4.16c: Expansion by Differentiation

Problem: Find the expansion of 1(1x)2\frac{1}{(1-x)^2}.

Solution:

Start with 11x=1+x+x2+x3+\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots

Differentiate both sides:

1(1x)2=1+2x+3x2+4x3+=n=0(n+1)xn\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \cdots = \sum_{n=0}^{\infty} (n+1)x^n
Example 4.16d: Expansion by Integration

Problem: Find the expansion of arctanx\arctan x.

Solution:

Note that ddxarctanx=11+x2\frac{d}{dx}\arctan x = \frac{1}{1+x^2}.

Expand 11+x2=1x2+x4x6+\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots

Integrate term by term:

arctanx=xx33+x55x77+=n=0(1)nx2n+12n+1\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}
Example 4.16e: Limit Evaluation with Taylor

Problem: Evaluate limx0cosx1+x22x4\lim_{x \to 0} \frac{\cos x - 1 + \frac{x^2}{2}}{x^4}.

Solution:

Using cosx=1x22+x424\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots:

cosx1+x22=x424x6720+\cos x - 1 + \frac{x^2}{2} = \frac{x^4}{24} - \frac{x^6}{720} + \cdots
cosx1+x22x4=124x2720+124\frac{\cos x - 1 + \frac{x^2}{2}}{x^4} = \frac{1}{24} - \frac{x^2}{720} + \cdots \to \frac{1}{24}
Remark 4.3b: Key Standard Expansions

Memorize these expansions:

ex=n=0xnn!e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
sinx=n=0(1)nx2n+1(2n+1)!\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}
cosx=n=0(1)nx2n(2n)!\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
ln(1+x)=n=1(1)n1xnn\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}
11x=n=0xn\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n
(1+x)α=n=0(αn)xn(1+x)^\alpha = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n
Example 4.16f: Hyperbolic Functions

Problem: Find the Maclaurin expansions of sinhx\sinh x and coshx\cosh x.

Solution:

Using sinhx=exex2\sinh x = \frac{e^x - e^{-x}}{2} and coshx=ex+ex2\cosh x = \frac{e^x + e^{-x}}{2}:

sinhx=x+x33!+x55!+=n=0x2n+1(2n+1)!\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}
coshx=1+x22!+x44!+=n=0x2n(2n)!\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}

Note: These are like sinx\sin x and cosx\cos x but without alternating signs!

Example 4.16g: Expansion of tan x

Problem: Find the first few terms of the Maclaurin series for tanx\tan x.

Solution:

Using tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} with long division or derivatives:

tanx=x+x33+2x515+17x7315+\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots

The coefficients involve Bernoulli numbers. Converges for x<π2|x| < \frac{\pi}{2}.

Remark 4.3c: Radius of Convergence

Infinite Radius:

ex,sinx,cosx,sinhx,coshxe^x, \sin x, \cos x, \sinh x, \cosh x

Radius = 1:

ln(1+x),11x,(1+x)α\ln(1+x), \frac{1}{1-x}, (1+x)^\alpha

Example 4.16h: Combining Expansions

Problem: Expand esinxe^{\sin x} up to x4x^4.

Solution:

Let u=sinx=xx36+O(x5)u = \sin x = x - \frac{x^3}{6} + O(x^5).

Then eu=1+u+u22+u36+e^u = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \cdots

esinx=1+(xx36)+12(xx36)2+16x3+e^{\sin x} = 1 + \left(x - \frac{x^3}{6}\right) + \frac{1}{2}\left(x - \frac{x^3}{6}\right)^2 + \frac{1}{6}x^3 + \cdots
=1+x+x22+x36x36+O(x4)=1+x+x22+O(x4)= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^3}{6} + O(x^4) = 1 + x + \frac{x^2}{2} + O(x^4)
Corollary 4.7: Even and Odd Functions

Even functions (f(x)=f(x)f(-x) = f(x)) have only even powers in their Maclaurin series.

Odd functions (f(x)=f(x)f(-x) = -f(x)) have only odd powers.

Examples: cosx\cos x is even; sinx\sin x is odd.

4. Applications

Example 4.17: Approximating sqrt(2)

Problem: Use Taylor expansion to approximate 2\sqrt{2}.

Solution:

Write 2=1+1=(1+1)1/2\sqrt{2} = \sqrt{1 + 1} = (1 + 1)^{1/2}.

Using (1+x)α=1+αx+α(α1)2x2+(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \cdots with x=1x = 1, α=1/2\alpha = 1/2:

21+1218+116\sqrt{2} \approx 1 + \frac{1}{2} - \frac{1}{8} + \frac{1}{16} - \cdots

Note: This converges slowly. Better to expand around x=1x = 1 using f(x)=1+xf(x) = \sqrt{1+x}.

Example 4.17b: Finding Series Coefficients

Problem: Find the coefficient of x5x^5 in the expansion of exsinxe^x \sin x.

Solution:

Multiply the series:

ex=1+x+x22+x36+x424+x5120+e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \cdots
sinx=xx36+x5120+\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \cdots

Coefficient of x5x^5:

11120+10+12(16)+160+1241=1120112+124=1301 \cdot \frac{1}{120} + 1 \cdot 0 + \frac{1}{2} \cdot (-\frac{1}{6}) + \frac{1}{6} \cdot 0 + \frac{1}{24} \cdot 1 = \frac{1}{120} - \frac{1}{12} + \frac{1}{24} = -\frac{1}{30}
Remark 4.4: Taylor vs L'Hospital

For limit problems, Taylor expansion is often faster and cleaner than L'Hospital's rule:

Use Taylor when:

  • • Multiple applications of L'Hospital would be needed
  • • You need the exact order of the limit
  • • The function involves compositions

Use L'Hospital when:

  • • The function is simple
  • • One or two applications suffice
  • • Taylor expansion is not obvious
Example 4.17c: Taylor Expansion at Non-Zero Point

Problem: Find the Taylor expansion of lnx\ln x around x0=1x_0 = 1.

Solution:

f(x)=lnxf(x) = \ln x, f(x)=1xf'(x) = \frac{1}{x}, f(x)=1x2f''(x) = -\frac{1}{x^2}, f(n)(x)=(1)n1(n1)!xnf^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}

At x0=1x_0 = 1: f(n)(1)=(1)n1(n1)!f^{(n)}(1) = (-1)^{n-1}(n-1)!

lnx=(x1)(x1)22+(x1)33=n=1(1)n1(x1)nn\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \cdots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^n}{n}
Example 4.17d: Physical Application: Small Angle Approximation

Application: For small angles, sinθθ\sin\theta \approx \theta (in radians).

From Taylor: sinθ=θθ36+θ5120\sin\theta = \theta - \frac{\theta^3}{6} + \frac{\theta^5}{120} - \cdots

For θ=0.1\theta = 0.1 rad (5.7°):

  • sin(0.1)=0.09983...\sin(0.1) = 0.09983...
  • First approximation: 0.10.1 (error < 0.02%)
  • With correction: 0.10.001/60.099830.1 - 0.001/6 \approx 0.09983

This approximation is fundamental in physics for pendulums, optics, etc.

Example 4.17e: Computing π Using Taylor Series

Application: Use arctan(1)=π4\arctan(1) = \frac{\pi}{4} to compute π\pi.

From the expansion arctanx=xx33+x55\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots:

π4=113+1517+\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots

Note: This converges very slowly! Better formulas exist (Machin's formula).

Example 4.17f: Complex Limit Using Taylor

Problem: Evaluate limx0tanxsinxx3\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.

Solution:

Using Taylor expansions:

sinx=xx36+o(x3)\sin x = x - \frac{x^3}{6} + o(x^3)
tanx=x+x33+o(x3)\tan x = x + \frac{x^3}{3} + o(x^3)

Therefore:

tanxsinx=x33+x36+o(x3)=x32+o(x3)\tan x - \sin x = \frac{x^3}{3} + \frac{x^3}{6} + o(x^3) = \frac{x^3}{2} + o(x^3)
limx0tanxsinxx3=12\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{1}{2}
Remark 4.5: Taylor Expansion Pitfalls
  • Radius of convergence: ln(1+x)\ln(1+x) only valid for 1<x1-1 < x \leq 1
  • Alternating series: Be careful with signs in cosx\cos x, ln(1+x)\ln(1+x)
  • Center point: Expansion around x0=0x_0 = 0 may not converge at your target
Example 4.17g: Numerical Integration Preview

Application: Approximate 01ex2dx\int_0^1 e^{-x^2} dx.

Using ex2=1x2+x42x66+e^{-x^2} = 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \cdots:

01ex2dx01(1x2+x42x66)dx\int_0^1 e^{-x^2} dx \approx \int_0^1 \left(1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6}\right) dx
=[xx33+x510x742]01=113+1101420.743= \left[x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42}\right]_0^1 = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} \approx 0.743

Actual value: 0.7468\approx 0.7468. Error < 0.5%.

Example 4.17h: Asymptotic Expansion

Problem: Find the behavior of 1+x1x\sqrt{1+x} - \sqrt{1-x} as x0x \to 0.

Solution:

Using (1+u)1/2=1+u2u28+(1+u)^{1/2} = 1 + \frac{u}{2} - \frac{u^2}{8} + \cdots:

1+x=1+x2x28+O(x3)\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + O(x^3)
1x=1x2x28+O(x3)\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} + O(x^3)
1+x1x=x+O(x3)\sqrt{1+x} - \sqrt{1-x} = x + O(x^3)

The difference is approximately xx for small xx.

Corollary 4.6: Taylor Expansion of Compositions

If ff and gg have Taylor expansions and g(x0)=0g(x_0) = 0, then:

f(g(x))=f(0)+f(0)g(x)+f(0)2g(x)2+f(g(x)) = f(0) + f'(0)g(x) + \frac{f''(0)}{2}g(x)^2 + \cdots

Substitute the expansion of gg and collect terms by degree.

Example 4.17i: Proving Euler's Formula Preview

Insight: Taylor expansions lead to Euler's formula eix=cosx+isinxe^{ix} = \cos x + i\sin x.

Expanding eixe^{ix} and grouping real/imaginary parts:

eix=1+ix+(ix)22!+(ix)33!+e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \cdots
=(1x22!+x44!)+i(xx33!+x55!)= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)
=cosx+isinx= \cos x + i\sin x
Example 4.17j: Approximating Definite Integrals

Problem: Estimate 00.5sinxxdx\int_0^{0.5} \frac{\sin x}{x} dx.

Solution:

Using sinxx=1x26+x4120\frac{\sin x}{x} = 1 - \frac{x^2}{6} + \frac{x^4}{120} - \cdots:

00.5sinxxdx00.5(1x26+x4120)dx\int_0^{0.5} \frac{\sin x}{x} dx \approx \int_0^{0.5} \left(1 - \frac{x^2}{6} + \frac{x^4}{120}\right) dx
=[xx318+x5600]00.5=0.50.00694+0.000050.4931= \left[x - \frac{x^3}{18} + \frac{x^5}{600}\right]_0^{0.5} = 0.5 - 0.00694 + 0.00005 \approx 0.4931
Remark 4.6: Comparison: L'Hospital vs Taylor

When to use each method:

SituationBest Method
Simple 0/0 or ∞/∞L'Hospital (1-2 applications)
Higher-order limitsTaylor (more efficient)
Numerical approximationTaylor with error bound
Proving inequalitiesTaylor with Lagrange remainder
Example 4.17k: Final Challenge Problem

Problem: Evaluate limx0exex2sinxxsinx\lim_{x \to 0} \frac{e^x - e^{-x} - 2\sin x}{x - \sin x}.

Solution:

Expand each term:

exex=2x+2x33!+O(x5)=2x+x33+O(x5)e^x - e^{-x} = 2x + \frac{2x^3}{3!} + O(x^5) = 2x + \frac{x^3}{3} + O(x^5)
2sinx=2x2x36+O(x5)=2xx33+O(x5)2\sin x = 2x - \frac{2x^3}{6} + O(x^5) = 2x - \frac{x^3}{3} + O(x^5)
xsinx=x36+O(x5)x - \sin x = \frac{x^3}{6} + O(x^5)

Numerator: x33+x33+O(x5)=2x33+O(x5)\frac{x^3}{3} + \frac{x^3}{3} + O(x^5) = \frac{2x^3}{3} + O(x^5)

limx02x33x36=2/31/6=4\lim_{x \to 0} \frac{\frac{2x^3}{3}}{\frac{x^3}{6}} = \frac{2/3}{1/6} = 4

Historical Context

L'Hospital's Rule (1696): Named after Guillaume de l'Hôpital, though actually discovered by Johann Bernoulli.

Taylor's Theorem (1715): Brook Taylor published this result, though earlier forms were known to Gregory and Newton.

Maclaurin Series (1742): Colin Maclaurin popularized the special case of Taylor series centered at 0.

L'Hospital & Taylor Practice
14
Questions
0
Correct
0%
Accuracy
1
Evaluate limx0sinxx\lim_{x \to 0} \frac{\sin x}{x} using L'Hospital's rule.
Easy
Not attempted
2
Evaluate limx0ex1xx2\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}.
Medium
Not attempted
3
What is the Maclaurin series of exe^x up to x3x^3?
Easy
Not attempted
4
The Lagrange remainder for Taylor's theorem is:
Medium
Not attempted
5
Evaluate limx0xsinxx3\lim_{x \to 0} \frac{x - \sin x}{x^3} using Taylor expansion.
Medium
Not attempted
6
For which form can L'Hospital's rule NOT be directly applied?
Easy
Not attempted
7
Evaluate limx0+xlnx\lim_{x \to 0^+} x \ln x.
Medium
Not attempted
8
Use Taylor's theorem to estimate ee with error less than 10510^{-5}.
Hard
Not attempted
9
Evaluate limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}.
Easy
Not attempted
10
What is the coefficient of x4x^4 in the Maclaurin series of cosx\cos x?
Easy
Not attempted
11
Evaluate limx0tanxxx3\lim_{x \to 0} \frac{\tan x - x}{x^3}.
Medium
Not attempted
12
What type of indeterminate form is limxx1/x\lim_{x \to \infty} x^{1/x}?
Medium
Not attempted
13
Using Taylor expansion, ex1xe^x - 1 - x \approx for small xx:
Medium
Not attempted
14
The Lagrange remainder bounds the error by:
Medium
Not attempted

Frequently Asked Questions

When does L'Hospital's rule fail?

When the conditions aren't met (not 0/0 or ∞/∞), when the limit of derivatives doesn't exist, or when applying it creates a more complex form.

What's the difference between Peano and Lagrange remainders?

Peano remainder R_n = o((x-x₀)ⁿ) only describes behavior as x → x₀. Lagrange remainder gives an explicit formula with ξ, useful for error bounds.

How do I know which Taylor expansion to use?

Use the expansion centered at the point where you're evaluating (usually x₀ = 0 for Maclaurin). Keep enough terms so the remainder is negligible.

Can I use Taylor expansion instead of L'Hospital's rule?

Yes! Often Taylor expansion is faster and more insightful. For limits like (sin x - x)/x³, one Taylor expansion gives the answer directly.

How many terms should I keep in a Taylor expansion?

Keep enough terms so the highest power in the numerator matches or exceeds the power in the denominator. For limits, stop when you can determine the leading behavior.

What's the binomial expansion for non-integer exponents?

(1+x)^α = Σ C(α,n)x^n where C(α,n) = α(α-1)...(α-n+1)/n!. This converges for |x| < 1.

Can Taylor series diverge?

Yes! The series may only converge in a limited radius. For example, ln(1+x) only converges for -1 < x ≤ 1.

How do I handle limits at infinity with Taylor?

Substitute u = 1/x and let u → 0. Then apply standard Maclaurin expansions.

What if I need to evaluate a limit but don't know the Taylor expansion?

You can always compute Taylor coefficients directly: f^(n)(x₀)/n!. Or try L'Hospital's rule as an alternative.

Why is the Maclaurin series of sin x only odd powers?

Because sin is an odd function: sin(-x) = -sin(x). Odd functions have only odd powers in their Taylor series centered at 0.

Key Takeaways

L'Hospital's Rule

limfg=limfg\lim \frac{f}{g} = \lim \frac{f'}{g'}

For 0/0 or ∞/∞ forms

Taylor's Theorem

f(x)=f(k)(x0)k!(xx0)k+Rnf(x) = \sum \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + R_n

Lagrange Remainder

Rn=f(n+1)(ξ)(n+1)!(xx0)n+1R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}

Key Expansions

ex,sinx,cosx,ln(1+x),(1+x)αe^x, \sin x, \cos x, \ln(1+x), (1+x)^\alpha

Study Tips

L'Hospital Strategy

First check if it's 0/0 or ∞/∞. If not, convert using algebra or logarithms. Apply the rule, but verify the new limit exists.

Taylor for Limits

For complex limits, Taylor is often faster. Expand to the order of the denominator, then simplify and take the limit.

Memorize Standard Series

Know exe^x, sinx\sin x, cosx\cos x, ln(1+x)\ln(1+x), and (1+x)α(1+x)^\alpha by heart. Derive others from these.

Error Bounds

Use Lagrange remainder for numerical estimates. Bound f(n+1)(ξ)|f^{(n+1)}(\xi)|over the interval to get the maximum error.

Common Mistakes to Avoid

  • Applying L'Hospital without checking form

    Only use for 0/0 or ∞/∞. Other forms need conversion first.

  • Keeping too few Taylor terms

    Make sure numerator order matches or exceeds denominator order.

  • Circular application of L'Hospital

    Sometimes applying the rule leads back to the original limit.

  • Confusing Peano and Lagrange remainders

    Use Peano for limits, Lagrange for error bounds.

What's Next?

In the next module, you will learn about Applications of Derivatives: using derivatives to analyze functions, find extrema, and solve optimization problems.

  • Monotonicity and first derivative test
  • Concavity and second derivative test
  • Curve sketching techniques
  • Optimization problems
Chapter Summary

This module covered powerful techniques for evaluating limits and approximating functions:

  • 1.L'Hospital's Rule handles 0/0 and ∞/∞ indeterminate forms via derivatives.
  • 2.Other Forms like 0·∞, ∞−∞, 0⁰, 1^∞, ∞⁰ require conversion first.
  • 3.Taylor's Theorem provides polynomial approximations with explicit error bounds.
  • 4.Standard Maclaurin Series for common functions are essential tools.