MathIsimple
CALC-3.1
4-5 hours

Function Limits and the ε-δ Definition

Master the precise definition of function limits that forms the rigorous foundation of calculus.

Learning Objectives
  • State and apply the precise ε-δ definition of function limits
  • Understand the geometric and intuitive meaning of the definition
  • Use Heine's theorem to connect function limits with sequence limits
  • Define and compute one-sided limits (left and right limits)
  • Understand and evaluate limits at infinity
  • Work with infinite limits and identify vertical asymptotes
  • Prove limits rigorously using the ε-δ definition
  • Apply standard limit formulas to compute complex limits
Historical Context

The ε-δ definition was developed in the 19th century to put calculus on a rigorous foundation. Augustin-Louis Cauchy (1789-1857) first introduced limits as the foundation of calculus in 1821.

Karl Weierstrass (1815-1897) formalized this into the precise ε-δ language we use today, resolving centuries of philosophical debates about infinitesimals.

1. The ε-δ Definition of Function Limits

In Chapter 2, we studied limits of sequences using the ε-N definition. Now we extend this concept to functions. The key idea remains the same: we want to capture what it means for f(x)f(x) to get "arbitrarily close" to a value LL as xx gets "sufficiently close" to x0x_0.

Definition 3.1: Punctured Neighborhood

A punctured neighborhood of x0x_0 with radius δ>0\delta > 0 is:

U(x0,δ)={xR:0<xx0<δ}=(x0δ,x0)(x0,x0+δ)U'(x_0, \delta) = \{x \in \mathbb{R} : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)

This is an open interval centered at x0x_0, but with x0x_0 itself removed.

Definition 3.2: Limit of a Function at a Point (ε-δ Definition)

Let ff be defined on some punctured neighborhood U(x0,δ0)U'(x_0, \delta_0). We say limxx0f(x)=L\lim_{x \to x_0} f(x) = L if and only if:

ε>0,δ>0:0<xx0<δf(x)L<ε\boxed{\forall \varepsilon > 0, \exists \delta > 0: 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon}
Understanding the Definition

1. "∀ε > 0" - The Challenge

Think of ε as a tolerance. Someone says: "I want f(x) within ε of L." No matter how small ε is, you must meet this challenge.

2. "∃δ > 0" - Your Response

You must produce a δ that works. The δ can depend on ε—smaller ε typically requires smaller δ.

3. "0 < |x - x₀| < δ" - Near but Not At

x is within δ of x₀, but NOT equal to x₀. We examine points near x₀, not at x₀ itself.

4. "|f(x) - L| < ε" - The Goal

f(x) must be within ε of L. If you can always achieve this for any ε, the limit is L.

Remark 3.1: Critical Observations
  • f need not be defined at x₀: We only require f to be defined on U'(x₀, δ₀).
  • f(x₀) is irrelevant: The limit depends only on values f(x) for x ≠ x₀.
  • δ depends on ε: We often write δ = δ(ε) to emphasize this.
  • Order of quantifiers matters: "∀ε, ∃δ" means δ can depend on ε.
Theorem 3.1: Uniqueness of Function Limits

If limxx0f(x)=L1\lim_{x \to x_0} f(x) = L_1 and limxx0f(x)=L2\lim_{x \to x_0} f(x) = L_2, then L1=L2L_1 = L_2.

Proof of Theorem 3.1:

Suppose L1L2L_1 \neq L_2. Let ε=L1L2/2>0\varepsilon = |L_1 - L_2|/2 > 0.

By the limit definitions, δ1,δ2>0\exists \delta_1, \delta_2 > 0 such that for 0<xx0<δi0 < |x - x_0| < \delta_i: f(x)Li<ε|f(x) - L_i| < \varepsilon.

Let δ=min(δ1,δ2)\delta = \min(\delta_1, \delta_2). Take any x with 0<xx0<δ0 < |x - x_0| < \delta.

By triangle inequality: L1L2L1f(x)+f(x)L2<2ε=L1L2|L_1 - L_2| \leq |L_1 - f(x)| + |f(x) - L_2| < 2\varepsilon = |L_1 - L_2|

Contradiction! Therefore L1=L2L_1 = L_2. ∎

Strategy for ε-δ Proofs
  1. Scratch Work: Start with |f(x) - L| < ε. Work backwards to find how δ relates to ε.
  2. Choose δ: Based on analysis, write δ = ... (often δ = ε/c for some constant c).
  3. Formal Proof: Let ε > 0. Define δ. Verify: 0 < |x - x₀| < δ ⟹ |f(x) - L| < ε.
Example 3.1: Linear Function: lim(3x - 1) as x → 2 = 5

Claim: limx2(3x1)=5\lim_{x \to 2} (3x - 1) = 5

Scratch Work:

Need 3x15=3x6=3x2<ε|3x - 1 - 5| = |3x - 6| = 3|x - 2| < \varepsilon

This holds when x2<ε/3|x - 2| < \varepsilon/3. So choose δ=ε/3\delta = \varepsilon/3.

Formal Proof:

Given: ε > 0. Choose: δ = ε/3 > 0.

Verify: If 0 < |x - 2| < δ = ε/3, then:

3x15=3x2<3ε3=ε|3x - 1 - 5| = 3|x - 2| < 3 \cdot \frac{\varepsilon}{3} = \varepsilon \quad \checkmark
Example 3.2: Quadratic Function: lim x² as x → 3 = 9

Claim: limx3x2=9\lim_{x \to 3} x^2 = 9

Scratch Work:

Need x29=x3x+3<ε|x^2 - 9| = |x-3||x+3| < \varepsilon

Bound |x+3|: If |x - 3| < 1, then 2 < x < 4, so |x+3| < 7.

Then x29<7x3|x^2 - 9| < 7|x - 3|. Need x3<ε/7|x - 3| < \varepsilon/7.

Formal Proof:

Choose: δ=min(1,ε/7)\delta = \min(1, \varepsilon/7)

If 0 < |x - 3| < δ, then |x - 3| < 1 (so |x+3| < 7) and |x - 3| < ε/7.

x29=x3x+3<ε77=ε|x^2 - 9| = |x-3||x+3| < \frac{\varepsilon}{7} \cdot 7 = \varepsilon \quad \checkmark
Example 3.3: Rationalization: lim (√x - 1)/(x - 1) as x → 1 = 1/2

Claim: limx1x1x1=12\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \frac{1}{2}

Simplification:

Note: x1=(x1)(x+1)x - 1 = (\sqrt{x} - 1)(\sqrt{x} + 1). For x ≠ 1:

x1x1=1x+1\frac{\sqrt{x} - 1}{x - 1} = \frac{1}{\sqrt{x} + 1}

Analysis:

Need 1x+112=1x2(x+1)<ε\left|\frac{1}{\sqrt{x}+1} - \frac{1}{2}\right| = \frac{|1-\sqrt{x}|}{2(\sqrt{x}+1)} < \varepsilon

If x > 0, then √x + 1 > 1, and |1 - √x| ≤ |1 - x|.

So the expression is bounded by |x - 1|/2.

Conclusion:

Choose δ = min(1/2, 2ε). Then the limit equals 1/2. ∎

Example 3.4: Non-existence: lim sin(1/x) as x → 0

Claim: limx0sin(1/x)\lim_{x \to 0} \sin(1/x) does not exist.

Proof by Contradiction:

Suppose limx0sin(1/x)=L\lim_{x \to 0} \sin(1/x) = L. Take ε = 1/2.

For any δ > 0, consider xn=1/(2πn)x_n = 1/(2\pi n) and yn=1/(π/2+2πn)y_n = 1/(\pi/2 + 2\pi n).

For large n, both are in (0, δ). But sin(1/xₙ) = 0 and sin(1/yₙ) = 1.

Both |0 - L| < 1/2 and |1 - L| < 1/2 cannot hold simultaneously.

Contradiction! The limit does not exist. ∎

Common Mistakes
  • Wrong quantifier order: "∃δ, ∀ε" instead of "∀ε, ∃δ"
  • Including x = x₀: Writing |x - x₀| < δ instead of 0 < |x - x₀| < δ
  • δ depending on x: Your δ must be fixed once ε is given
  • Confusing f(x₀) with limit: The limit has nothing to do with f(x₀)

2. Heine's Theorem (Sequential Criterion)

Heine's theorem bridges function limits (ε-δ) and sequence limits (ε-N). This allows us to use everything we learned about sequences to analyze functions.

Theorem 3.2: Heine's Theorem

Let f be defined on U'(x₀, δ₀). Then:

limxx0f(x)=LFor all {xn} with xnx0,xnx0:f(xn)L\lim_{x \to x_0} f(x) = L \quad \Longleftrightarrow \quad \text{For all } \{x_n\} \text{ with } x_n \to x_0, x_n \neq x_0: f(x_n) \to L
Proof of Theorem 3.2:

(⇒) Function limit ⟹ Sequential limit:

Assume limxx0f(x)=L\lim_{x \to x_0} f(x) = L. Let {xₙ} be any sequence with xₙ → x₀, xₙ ≠ x₀.

Given ε > 0, ∃δ > 0: 0 < |x - x₀| < δ ⟹ |f(x) - L| < ε.

Since xₙ → x₀, ∃N: n > N ⟹ |xₙ - x₀| < δ. Since xₙ ≠ x₀, we have 0 < |xₙ - x₀| < δ.

Therefore |f(xₙ) - L| < ε for n > N, proving f(xₙ) → L. ∎

(⇐) By contrapositive:

If the function limit ≠ L, then ∃ε₀ > 0 such that ∀δ > 0, ∃x with 0 < |x - x₀| < δ but |f(x) - L| ≥ ε₀.

Take δ = 1/n. Get xₙ with 0 < |xₙ - x₀| < 1/n but |f(xₙ) - L| ≥ ε₀.

Then xₙ → x₀ (since |xₙ - x₀| < 1/n → 0), xₙ ≠ x₀, but f(xₙ) ↛ L. ∎

Corollary 3.1: Non-existence Criterion

If ∃ sequences {xₙ}, {yₙ} → x₀ (with terms ≠ x₀) such that limf(xn)limf(yn)\lim f(x_n) \neq \lim f(y_n), then limxx0f(x)\lim_{x \to x_0} f(x) does not exist.

Example 3.5: Using Heine's Theorem

Problem: Show limx0sin(1/x)\lim_{x \to 0} \sin(1/x) does not exist using Heine.

Sequence 1: xₙ = 1/(nπ) → 0. Then sin(nπ) = 0, so limit = 0.

Sequence 2: yₙ = 1/(π/2 + 2nπ) → 0. Then sin(π/2 + 2nπ) = 1, so limit = 1.

Since 0 ≠ 1, by Corollary 3.1, the limit does not exist. ∎

Remark 3.2: When to Use Heine's Theorem
  • To prove existence: Show ALL sequences give the same limit
  • To prove non-existence: Find TWO sequences giving different limits (easier!)
  • To transfer results: Apply sequence theorems to function limits

3. One-Sided Limits

Sometimes we want to consider the limit from only one direction—from the left or from the right. This is especially useful for piecewise functions or functions with jump discontinuities.

Definition 3.3: Right-Hand Limit

We say limxx0+f(x)=L\lim_{x \to x_0^+} f(x) = L (the right-hand limit) if:

ε>0,δ>0:x0<x<x0+δf(x)L<ε\forall \varepsilon > 0, \exists \delta > 0: x_0 < x < x_0 + \delta \Rightarrow |f(x) - L| < \varepsilon

We approach x₀ from the right (x > x₀).

Definition 3.4: Left-Hand Limit

We say limxx0f(x)=L\lim_{x \to x_0^-} f(x) = L (the left-hand limit) if:

ε>0,δ>0:x0δ<x<x0f(x)L<ε\forall \varepsilon > 0, \exists \delta > 0: x_0 - \delta < x < x_0 \Rightarrow |f(x) - L| < \varepsilon

We approach x₀ from the left (x < x₀).

Theorem 3.3: Two-Sided vs One-Sided Limits
limxx0f(x)=Llimxx0+f(x)=L=limxx0f(x)\lim_{x \to x_0} f(x) = L \quad \Longleftrightarrow \quad \lim_{x \to x_0^+} f(x) = L = \lim_{x \to x_0^-} f(x)

The two-sided limit exists iff both one-sided limits exist and are equal.

Example 3.6: Piecewise Function

For f(x)={x2x<12xx1f(x) = \begin{cases} x^2 & x < 1 \\ 2x & x \geq 1 \end{cases}, find limits at x = 1.

Left-hand limit: For x < 1, f(x) = x². So limx1f(x)=12=1\lim_{x \to 1^-} f(x) = 1^2 = 1

Right-hand limit: For x ≥ 1, f(x) = 2x. So limx1+f(x)=2(1)=2\lim_{x \to 1^+} f(x) = 2(1) = 2

Conclusion: Since 1 ≠ 2, limx1f(x)\lim_{x \to 1} f(x) does not exist.

Example 3.7: Sign Function

For sgn(x) = {1 if x > 0, 0 if x = 0, -1 if x < 0}, find limits at x = 0.

limx0+sgn(x)=1,limx0sgn(x)=1\lim_{x \to 0^+} \text{sgn}(x) = 1, \quad \lim_{x \to 0^-} \text{sgn}(x) = -1

Since 1 ≠ -1, limx0sgn(x)\lim_{x \to 0} \text{sgn}(x) does not exist.

Example 3.8: Absolute Value

For f(x)=xxf(x) = \frac{|x|}{x}, find limits at x = 0.

For x > 0: |x|/x = x/x = 1. For x < 0: |x|/x = -x/x = -1.

limx0+xx=1,limx0xx=1\lim_{x \to 0^+} \frac{|x|}{x} = 1, \quad \lim_{x \to 0^-} \frac{|x|}{x} = -1

The two-sided limit does not exist (this is the sign function!).

4. Limits at Infinity

We can also ask: what happens to f(x) as x becomes very large (positive or negative)? This leads to the concept of limits at infinity.

Definition 3.5: Limit as x → +∞

Let f be defined on (a, +∞) for some a ∈ ℝ. We say limx+f(x)=L\lim_{x \to +\infty} f(x) = L if:

ε>0,M>0:x>Mf(x)L<ε\forall \varepsilon > 0, \exists M > 0: x > M \Rightarrow |f(x) - L| < \varepsilon
Definition 3.6: Limit as x → −∞

Similarly, limxf(x)=L\lim_{x \to -\infty} f(x) = L if:

ε>0,M>0:x<Mf(x)L<ε\forall \varepsilon > 0, \exists M > 0: x < -M \Rightarrow |f(x) - L| < \varepsilon
Remark 3.3: Horizontal Asymptotes

If limx+f(x)=L\lim_{x \to +\infty} f(x) = L or limxf(x)=L\lim_{x \to -\infty} f(x) = L, the line y = L is a horizontal asymptote.

Rational Function Limits at Infinity

For f(x)=anxn++a0bmxm++b0f(x) = \frac{a_nx^n + \cdots + a_0}{b_mx^m + \cdots + b_0} with aₙ, bₘ ≠ 0:

If n < m

limxf(x)=0\lim_{x \to \infty} f(x) = 0

If n = m

limxf(x)=anbm\lim_{x \to \infty} f(x) = \frac{a_n}{b_m}

If n > m

limxf(x)=±\lim_{x \to \infty} f(x) = \pm\infty
Example 3.9: Rational Function at Infinity

Find limx+3x2+2x1x22\lim_{x \to +\infty} \frac{3x^2 + 2x - 1}{x^2 - 2}.

Method: Divide numerator and denominator by x² (highest power):

3x2+2x1x22=3+2x1x212x2\frac{3x^2 + 2x - 1}{x^2 - 2} = \frac{3 + \frac{2}{x} - \frac{1}{x^2}}{1 - \frac{2}{x^2}}

As x → +∞: 2/x → 0, 1/x² → 0, 2/x² → 0.

limx+3x2+2x1x22=3+0010=3\lim_{x \to +\infty} \frac{3x^2 + 2x - 1}{x^2 - 2} = \frac{3 + 0 - 0}{1 - 0} = 3
Example 3.10: Exponential vs Polynomial

Find limx+exx100\lim_{x \to +\infty} \frac{e^x}{x^{100}}.

Answer: +∞. Exponentials always dominate polynomials.

Intuition: eˣ grows faster than any polynomial xⁿ as x → +∞.

5. Infinite Limits and Asymptotes

Definition 3.7: Infinite Limit at a Point

We say limxx0f(x)=+\lim_{x \to x_0} f(x) = +\infty if:

M>0,δ>0:0<xx0<δf(x)>M\forall M > 0, \exists \delta > 0: 0 < |x - x_0| < \delta \Rightarrow f(x) > M

Similarly for -\infty: replace f(x) > M with f(x) < -M.

Remark 3.4: Vertical Asymptotes

If limxx0+f(x)=±\lim_{x \to x_0^+} f(x) = \pm\infty or limxx0f(x)=±\lim_{x \to x_0^-} f(x) = \pm\infty, the line x = x₀ is a vertical asymptote.

Example 3.11: Vertical Asymptote of 1/x

Find one-sided limits of f(x) = 1/x at x = 0.

limx0+1x=+,limx01x=\lim_{x \to 0^+} \frac{1}{x} = +\infty, \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty

The line x = 0 is a vertical asymptote of y = 1/x.

Example 3.12: Finding All Asymptotes

Find all asymptotes of f(x)=x2+1x1f(x) = \frac{x^2 + 1}{x - 1}.

Vertical: x = 1 (denominator = 0).

limx1+f(x)=+,limx1f(x)=\lim_{x \to 1^+} f(x) = +\infty, \quad \lim_{x \to 1^-} f(x) = -\infty

Oblique: Perform polynomial division: f(x) = x + 1 + 2/(x-1).

As x → ±∞, 2/(x-1) → 0, so y = x + 1 is an oblique asymptote.

6. Important Standard Limits

Fundamental Limits to Memorize

Trigonometric

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}
limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1

Exponential/Logarithmic

limx0(1+x)1/x=e\lim_{x \to 0} (1 + x)^{1/x} = e
limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1
limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1

Power Functions

limx0(1+x)α1x=α\lim_{x \to 0} \frac{(1+x)^\alpha - 1}{x} = \alpha
limx0ax1x=lna\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a

Inverse Trig

limx0arcsinxx=1\lim_{x \to 0} \frac{\arcsin x}{x} = 1
limx0arctanxx=1\lim_{x \to 0} \frac{\arctan x}{x} = 1
Example 3.13: Using Standard Limits

Find limx0sin3xx\lim_{x \to 0} \frac{\sin 3x}{x}.

limx0sin3xx=limx0sin3x3x3=13=3\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 3 = 1 \cdot 3 = 3
Example 3.14: Exponential Limit

Find limx0(12x)1/x\lim_{x \to 0} (1 - 2x)^{1/x}.

Method: Rewrite using the standard limit form:

(12x)1/x=[(1+(2x))1/(2x)]2(1 - 2x)^{1/x} = \left[(1 + (-2x))^{1/(-2x)}\right]^{-2}

As x → 0, -2x → 0, so (1 + (-2x))^{1/(-2x)} → e.

limx0(12x)1/x=e2\lim_{x \to 0} (1 - 2x)^{1/x} = e^{-2}
Example 3.15: Combined Techniques

Find limx0e2x12xx2\lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x^2}.

Using Taylor expansion: e^{2x} ≈ 1 + 2x + 2x² + ... near x = 0.

e2x12xx22x2+O(x3)x22\frac{e^{2x} - 1 - 2x}{x^2} \approx \frac{2x^2 + O(x^3)}{x^2} \to 2

Answer: 2

Example 3.16: Trigonometric Substitution

Find limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}.

Method 1 (Half-angle identity):

1cosx=2sin2(x/2)1 - \cos x = 2\sin^2(x/2)
1cosxx2=2sin2(x/2)x2=12(sin(x/2)x/2)2\frac{1 - \cos x}{x^2} = \frac{2\sin^2(x/2)}{x^2} = \frac{1}{2} \cdot \left(\frac{\sin(x/2)}{x/2}\right)^2

As x → 0, (x/2) → 0, so sin(x/2)/(x/2) → 1.

limx01cosxx2=1212=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \cdot 1^2 = \frac{1}{2}
Example 3.17: Composite Functions

Find limx0sin(tanx)x\lim_{x \to 0} \frac{\sin(\tan x)}{x}.

Solution: Write as a product:

sin(tanx)x=sin(tanx)tanxtanxx\frac{\sin(\tan x)}{x} = \frac{\sin(\tan x)}{\tan x} \cdot \frac{\tan x}{x}

As x → 0: tan x → 0, so sin(tan x)/(tan x) → 1.

Also, tan x / x = (sin x / x) · (1 / cos x) → 1 · 1 = 1.

limx0sin(tanx)x=11=1\lim_{x \to 0} \frac{\sin(\tan x)}{x} = 1 \cdot 1 = 1
Example 3.18: Logarithmic Limit

Find limx0ln(1+sinx)x\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}.

Solution: Write as:

ln(1+sinx)x=ln(1+sinx)sinxsinxx\frac{\ln(1 + \sin x)}{x} = \frac{\ln(1 + \sin x)}{\sin x} \cdot \frac{\sin x}{x}

As x → 0: sin x → 0, so ln(1 + sin x)/(sin x) → 1.

And sin x / x → 1.

limx0ln(1+sinx)x=11=1\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x} = 1 \cdot 1 = 1

7. Advanced ε-δ Proof Techniques

Mastering ε-δ proofs requires practice with various function types. Here we present systematic approaches for different situations.

Strategy 1: Linear Functions

For f(x)=ax+bf(x) = ax + b with a0a \neq 0:

f(x)L=ax+bL=axx0|f(x) - L| = |ax + b - L| = |a||x - x_0|

Choose: δ=ε/a\delta = \varepsilon / |a|

Linear functions are the simplest—δ is directly proportional to ε.

Strategy 2: Polynomial Functions

For polynomials near x₀:

  1. Factor: f(x)L=xx0g(x)|f(x) - L| = |x - x_0| \cdot g(x)| where g(x) is bounded near x₀
  2. Restrict: Assume xx0<1|x - x_0| < 1 first to bound g(x)
  3. Find bound: g(x)M|g(x)| \leq M for some M
  4. Choose: δ=min(1,ε/M)\delta = \min(1, \varepsilon/M)
Strategy 3: Rational Functions

For f(x)=p(x)/q(x)f(x) = p(x)/q(x) where q(x0)0q(x_0) \neq 0:

  1. First bound the denominator away from 0
  2. Use: q(x)q(x0)/2|q(x)| \geq |q(x_0)|/2 when x is close to x₀
  3. Combine with numerator analysis

Key insight: Control the denominator before controlling the whole expression.

Example 3.19: Detailed Polynomial Proof

Claim: limx2x3=8\lim_{x \to 2} x^3 = 8

Step 1: Factor

x38=x2x2+2x+4|x^3 - 8| = |x - 2||x^2 + 2x + 4|

Step 2: Bound the second factor

If |x - 2| < 1, then 1 < x < 3, so:

x2+2x+49+6+4=19|x^2 + 2x + 4| \leq 9 + 6 + 4 = 19

Step 3: Choose δ

Need x219<ε|x - 2| \cdot 19 < \varepsilon, so x2<ε/19|x - 2| < \varepsilon/19.

Choose: δ=min(1,ε/19)\delta = \min(1, \varepsilon/19)

Step 4: Verify

If 0 < |x - 2| < δ, then:

x38=x2x2+2x+4<ε1919=ε|x^3 - 8| = |x - 2||x^2 + 2x + 4| < \frac{\varepsilon}{19} \cdot 19 = \varepsilon \quad \checkmark
Example 3.20: Rational Function Proof

Claim: limx11x=1\lim_{x \to 1} \frac{1}{x} = 1

Step 1: Analyze

1x1=1xx=x1x\left|\frac{1}{x} - 1\right| = \left|\frac{1 - x}{x}\right| = \frac{|x - 1|}{|x|}

Step 2: Bound the denominator

If |x - 1| < 1/2, then 1/2 < x < 3/2, so |x| > 1/2.

Thus 1/|x| < 2.

Step 3: Complete

x1x<2x1\frac{|x - 1|}{|x|} < 2|x - 1|

Need 2|x - 1| < ε, so |x - 1| < ε/2.

Choose: δ = min(1/2, ε/2)

Remark 3.5: The min() Trick

When your proof requires two conditions on δ:

  1. δ < a (to make some preliminary bound work)
  2. δ < ε/c (to get the final estimate)

Choose δ=min(a,ε/c)\delta = \min(a, \varepsilon/c). This ensures BOTH conditions hold.

8. Proving Limits Do NOT Exist

Sometimes the limit doesn't exist. Understanding how to prove non-existence is just as important as proving existence.

Definition 3.8: Negation of the ε-δ Definition

limxx0f(x)L\lim_{x \to x_0} f(x) \neq L means:

ε0>0 such that δ>0,x:0<xx0<δ but f(x)Lε0\exists \varepsilon_0 > 0 \text{ such that } \forall \delta > 0, \exists x: 0 < |x - x_0| < \delta \text{ but } |f(x) - L| \geq \varepsilon_0

Note how the quantifiers are flipped: ∀ε becomes ∃ε₀, and ∃δ becomes ∀δ.

Three Ways to Prove Non-existence

Method 1: Heine's Theorem

Find two sequences xₙ → x₀ and yₙ → x₀ such that lim f(xₙ) ≠ lim f(yₙ).

Often the easiest method!

Method 2: One-sided Limits Differ

Show limxx0+f(x)limxx0f(x)\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x).

Method 3: Direct ε-δ Negation

Exhibit a specific ε₀ for which no δ works.

Example 3.21: Oscillation at a Point

Claim: limx0cos(1/x)\lim_{x \to 0} \cos(1/x) does not exist.

Proof using Heine's theorem:

Sequence 1: xₙ = 1/(2πn) → 0. Then cos(2πn) = 1 → 1.

Sequence 2: yₙ = 1/(πn) → 0. Then cos(πn) = (-1)ⁿ, which doesn't converge.

Since f(yₙ) doesn't converge, the function limit cannot exist. ∎

Example 3.22: Jump Discontinuity

Claim: limx0x\lim_{x \to 0} \lfloor x \rfloor does not exist (floor function).

Proof using one-sided limits:

For 0 < x < 1: ⌊x⌋ = 0, so limx0+x=0\lim_{x \to 0^+} \lfloor x \rfloor = 0

For -1 < x < 0: ⌊x⌋ = -1, so limx0x=1\lim_{x \to 0^-} \lfloor x \rfloor = -1

Since 0 ≠ -1, the two-sided limit doesn't exist. ∎

Example 3.23: Unbounded Oscillation

Claim: limx01xsin(1/x)\lim_{x \to 0} \frac{1}{x}\sin(1/x) does not exist.

Proof: Consider xₙ = 1/(π/2 + 2πn).

Then sin(1/xₙ) = 1, and:

1xnsin(1/xn)=(π/2+2πn)1=π2+2πn+\frac{1}{x_n}\sin(1/x_n) = (\pi/2 + 2\pi n) \cdot 1 = \frac{\pi}{2} + 2\pi n \to +\infty

The function is unbounded near 0, so no finite limit exists.

But also consider yₙ = 1/(3π/2 + 2πn), giving values → -∞.

So even +∞ or -∞ is not a valid limit. The limit simply doesn't exist. ∎

9. Additional Worked Examples

Example 3.24: L'Hôpital Preview

Find limx0xsinxx3\lim_{x \to 0} \frac{x - \sin x}{x^3} (without L'Hôpital).

Using Taylor series: sin x = x - x³/6 + x⁵/120 - ...

xsinx=x(xx36+O(x5))=x36+O(x5)x - \sin x = x - (x - \frac{x^3}{6} + O(x^5)) = \frac{x^3}{6} + O(x^5)
xsinxx3=x3/6+O(x5)x3=16+O(x2)16\frac{x - \sin x}{x^3} = \frac{x^3/6 + O(x^5)}{x^3} = \frac{1}{6} + O(x^2) \to \frac{1}{6}
Example 3.25: Squeeze Theorem Application

Find limxsinxx\lim_{x \to \infty} \frac{\sin x}{x}.

Solution: Since -1 ≤ sin x ≤ 1 for all x:

1xsinxx1xfor x>0\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x} \quad \text{for } x > 0

As x → +∞: -1/x → 0 and 1/x → 0.

By Squeeze Theorem: limxsinxx=0\lim_{x \to \infty} \frac{\sin x}{x} = 0

Example 3.26: Exponential Base

Find limx0+xx\lim_{x \to 0^+} x^x.

Solution: Write xx=exlnxx^x = e^{x \ln x}.

First find limx0+xlnx\lim_{x \to 0^+} x \ln x:

xlnx=lnx1/xx \ln x = \frac{\ln x}{1/x}

As x → 0⁺: ln x → -∞ and 1/x → +∞. This is -∞/∞ form.

Let t = 1/x, so x = 1/t and x → 0⁺ means t → +∞:

xlnx=lntt0 as t+x \ln x = \frac{-\ln t}{t} \to 0 \text{ as } t \to +\infty

Therefore: limx0+xx=e0=1\lim_{x \to 0^+} x^x = e^0 = 1

Example 3.27: Nested Radicals

Find limx01+x1xx\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}.

Solution: Rationalize:

1+x1xx1+x+1x1+x+1x\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \cdot \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}
=(1+x)(1x)x(1+x+1x)=2xx(1+x+1x)= \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})}
=21+x+1x21+1=1= \frac{2}{\sqrt{1+x} + \sqrt{1-x}} \to \frac{2}{1+1} = 1
Example 3.28: Comparing Growth Rates

Prove that limx+lnxxα=0\lim_{x \to +\infty} \frac{\ln x}{x^\alpha} = 0 for any α > 0.

Proof: Let y = ln x, so x = eʸ and x → +∞ means y → +∞.

lnxxα=yeαy\frac{\ln x}{x^\alpha} = \frac{y}{e^{\alpha y}}

Since eᵅʸ grows faster than any polynomial in y:

yeαy0 as y+\frac{y}{e^{\alpha y}} \to 0 \text{ as } y \to +\infty

Conclusion: Logarithms grow slower than ANY positive power. ∎

10. Growth Rate Hierarchy

Understanding how different functions grow as x → ∞ is essential for evaluating limits. Here's the complete hierarchy from slowest to fastest growth.

Growth Rate Ordering (Slowest to Fastest)
1
ln(ln x)Iterated logarithm
2
ln xLogarithm
3
x^α (α > 0)Power functions
4
a^x (a > 1)Exponential
5
x!Factorial
6
x^xTower function

Key insight: When computing limits of ratios, the faster-growing function "wins."

Example 3.29: Applying Growth Hierarchy

Evaluate these limits at +∞:

limx+x100ex=0\lim_{x \to +\infty} \frac{x^{100}}{e^x} = 0

Exponential beats any polynomial.

limx+(lnx)1000x0.001=0\lim_{x \to +\infty} \frac{(\ln x)^{1000}}{x^{0.001}} = 0

Any positive power beats any power of logarithm.

limx+exx!=0\lim_{x \to +\infty} \frac{e^x}{x!} = 0

Factorial beats exponential.

Remark 3.6: Infinitesimals Near Zero

Near x = 0, the hierarchy reverses for "smallness":

  • x2x^2 is smaller than xx (faster approach to 0)
  • e1/x2e^{-1/x^2} is smaller than any xnx^n
  • 1cosxx2/21 - \cos x \sim x^2/2 (same order as x2x^2)

11. Infinitesimals and Asymptotic Notation

Definition 3.9: Infinitesimal

A function α(x)\alpha(x) is an infinitesimal as x → x₀ if:

limxx0α(x)=0\lim_{x \to x_0} \alpha(x) = 0
Definition 3.10: Order Comparison of Infinitesimals

Let α(x) and β(x) be infinitesimals as x → x₀ with β(x) ≠ 0 near x₀:

  • Same order: limαβ=c0\lim \frac{\alpha}{\beta} = c \neq 0 (write α ~ cβ or α = O(β))
  • α higher order than β: limαβ=0\lim \frac{\alpha}{\beta} = 0 (write α = o(β))
  • α lower order than β: limαβ=±\lim \frac{\alpha}{\beta} = \pm\infty
  • Equivalent: limαβ=1\lim \frac{\alpha}{\beta} = 1 (write α ~ β)
Standard Equivalences as x → 0
sinxx\sin x \sim x
tanxx\tan x \sim x
arcsinxx\arcsin x \sim x
arctanxx\arctan x \sim x
1cosxx221 - \cos x \sim \frac{x^2}{2}
ex1xe^x - 1 \sim x
ln(1+x)x\ln(1+x) \sim x
(1+x)α1αx(1+x)^\alpha - 1 \sim \alpha x

Usage: Replace equivalent infinitesimals in limits for easier computation.

Example 3.30: Using Equivalences

Find limx0tanxsinxx3\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.

Solution:

tanxsinx=sinxcosxsinx=sinx(1cosxcosx)\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1 - \cos x}{\cos x}\right)

Using equivalences: sin x ~ x, 1 - cos x ~ x²/2, cos x → 1:

tanxsinxxx2/21=x32\tan x - \sin x \sim x \cdot \frac{x^2/2}{1} = \frac{x^3}{2}
limx0tanxsinxx3=limx0x3/2x3=12\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{x^3/2}{x^3} = \frac{1}{2}
Example 3.31: Careful with Equivalences

Find limx0sinxxx3\lim_{x \to 0} \frac{\sin x - x}{x^3}.

Warning: Cannot simply replace sin x ~ x here (would give 0/x³)!

Correct approach: Use Taylor series:

sinx=xx36+O(x5)\sin x = x - \frac{x^3}{6} + O(x^5)
sinxxx3=x3/6+O(x5)x3=16+O(x2)16\frac{\sin x - x}{x^3} = \frac{-x^3/6 + O(x^5)}{x^3} = -\frac{1}{6} + O(x^2) \to -\frac{1}{6}

Lesson: Equivalences only work for products/quotients, not for sums where cancellation occurs.

Remark 3.7: When to Use Equivalences
  • Safe: Replacing factors in products or quotients
  • Unsafe: Replacing terms in sums/differences (cancellation may occur)
  • Alternative: When unsafe, use Taylor expansion instead

12. Writing Rigorous ε-δ Proofs

Complete ε-δ Proof Template

Claim: lim_{x → x₀} f(x) = L

Proof:

Let ε > 0 be given. [Start of proof]

Choose δ = ... [Your choice, may depend on ε]

Suppose 0 < |x - x₀| < δ. [Assume the hypothesis]

Then ... [Chain of inequalities]

Therefore |f(x) - L| < ε. [Reach the conclusion]

Since ε was arbitrary, lim_{x → x₀} f(x) = L. ∎

Example 3.32: Complete Formal Proof

Claim: limx4x=2\lim_{x \to 4} \sqrt{x} = 2

Scratch Work (not part of formal proof):

Need x2<ε|\sqrt{x} - 2| < \varepsilon.

x2=x4x+2|\sqrt{x} - 2| = \frac{|x - 4|}{\sqrt{x} + 2}

If |x - 4| < 2, then x > 2, so √x > √2, thus √x + 2 > 2.

So x2<x42|\sqrt{x} - 2| < \frac{|x - 4|}{2}. Need |x - 4|/2 < ε, i.e., |x - 4| < 2ε.

Formal Proof:

Proof: Let ε > 0 be given.

Choose δ = min(2, 2ε) > 0.

Suppose 0 < |x - 4| < δ.

Since δ ≤ 2, we have |x - 4| < 2, so x > 2 > 0, which gives √x + 2 > 2.

Then:

x2=x4x+2<x42<δ22ε2=ε|\sqrt{x} - 2| = \frac{|x - 4|}{\sqrt{x} + 2} < \frac{|x - 4|}{2} < \frac{\delta}{2} \leq \frac{2\varepsilon}{2} = \varepsilon

Since ε was arbitrary, limx4x=2\lim_{x \to 4} \sqrt{x} = 2. ∎

Remark 3.8: Proof Writing Tips
  • Always state "Let ε > 0" at the beginning
  • Clearly specify your choice of δ before using it
  • Verify δ > 0 (especially for min() constructions)
  • Show each step clearly in the inequality chain
  • End with the conclusion and ∎ or QED

13. Preview: Connection to Continuity

The concept of limits naturally leads to continuity—one of the most important properties in analysis. Here's a preview of how they connect.

Definition 3.11: Continuity (Preview)

A function f is continuous at x₀ if:

limxx0f(x)=f(x0)\lim_{x \to x_0} f(x) = f(x_0)

This requires three things: (1) f(x₀) exists, (2) the limit exists, (3) they're equal.

Remark 3.9: Limit vs Continuity
  • Limit: Only cares about behavior near x₀, not at x₀
  • Continuity: Requires limit to match the actual value at x₀
  • Example: f(x) = sin(x)/x has a limit at 0, but isn't continuous there (undefined)
  • Removable discontinuity: Limit exists but ≠ f(x₀) (can be "fixed")
Example 3.33: Making a Function Continuous

Define f(0) to make f(x)=sinxxf(x) = \frac{\sin x}{x} continuous at x = 0.

Solution: We need f(0) = lim_{x→0} (sin x)/x = 1.

Define:

f(x)={sinxxx01x=0f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}

This function is continuous everywhere.

Example 3.34: Limit at Discontinuity

For f(x)=xf(x) = \lfloor x \rfloor (floor function), find limits at x = 2.

Left-hand limit: For 1 < x < 2, ⌊x⌋ = 1.

limx2x=1\lim_{x \to 2^-} \lfloor x \rfloor = 1

Right-hand limit: For 2 ≤ x < 3, ⌊x⌋ = 2.

limx2+x=2\lim_{x \to 2^+} \lfloor x \rfloor = 2

Note: f(2) = 2, so f is right-continuous at 2 but not left-continuous.

Example 3.35: Trigonometric at Infinity

Find limx+(1+1x)x2\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{x^2}.

Solution: Write as exponential:

(1+1x)x2=ex2ln(1+1x)\left(1 + \frac{1}{x}\right)^{x^2} = e^{x^2 \ln\left(1 + \frac{1}{x}\right)}

Using ln(1 + u) ≈ u - u²/2 + ... for small u = 1/x:

x2ln(1+1x)x2(1x12x2)=x12+x^2 \ln\left(1 + \frac{1}{x}\right) \approx x^2 \left(\frac{1}{x} - \frac{1}{2x^2}\right) = x - \frac{1}{2} \to +\infty

Therefore the limit is ++\infty.

Remark 3.10: Key Takeaways for Exam Preparation
  • Master the ε-δ template: Practice writing formal proofs for linear, quadratic, and rational functions
  • Know Heine's theorem: Use sequences to prove non-existence of limits
  • Memorize standard limits: They appear frequently in problems
  • Recognize indeterminate forms: 0/0, ∞/∞, 0·∞, 1^∞, 0^0, ∞^0, ∞-∞
  • Practice equivalence substitution: Know when it's safe and when it's not
What's Next?

Now that you've mastered the definition of function limits, the next section covers:

  • Uniqueness of limits - rigorous proof
  • Local boundedness - limits imply bounded behavior
  • Sign preservation - positive limits give positive values
  • Limit laws - arithmetic operations on limits
  • Squeeze theorem - powerful tool for evaluating limits
  • Cauchy criterion - alternative existence condition
Chapter 3.1 Comprehensive Summary

Key Definitions

  • • ε-δ definition of function limits
  • • One-sided limits (left and right)
  • • Limits at infinity (x → ±∞)
  • • Infinite limits (f(x) → ±∞)

Key Theorems

  • • Uniqueness of limits
  • • Heine's theorem (sequential criterion)
  • • Two-sided = both one-sided

Asymptotes

  • • Vertical: infinite limit at x₀
  • • Horizontal: limit at ±∞
  • • Oblique: linear at ±∞

Standard Limits

  • • (sin x)/x → 1
  • • (1 + x)^{1/x} → e
  • • (eˣ - 1)/x → 1
  • • ln(1+x)/x → 1
Practice Quiz: ε-δ Definition
12
Questions
0
Correct
0%
Accuracy
1
In the ε-δ definition of limxx0f(x)=L\lim_{x \to x_0} f(x) = L, what must be true?
Medium
Not attempted
2
What does Heine's theorem state?
Medium
Not attempted
3
For limx0sin(1/x)\lim_{x \to 0} \sin(1/x), what can we conclude?
Medium
Not attempted
4
What is limx1x1x1\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}?
Easy
Not attempted
5
What is limx+3x2+2x1x22\lim_{x \to +\infty} \frac{3x^2 + 2x - 1}{x^2 - 2}?
Easy
Not attempted
6
If left and right limits differ, the two-sided limit:
Easy
Not attempted
7
What is limx0+1x\lim_{x \to 0^+} \frac{1}{x}?
Easy
Not attempted
8
In limx+f(x)=L\lim_{x \to +\infty} f(x) = L, what replaces the δ condition?
Medium
Not attempted
9
If limxx0f(x)=+\lim_{x \to x_0} f(x) = +\infty, the graph has:
Easy
Not attempted
10
To prove limx2(3x1)=5\lim_{x \to 2} (3x - 1) = 5, choose δ=\delta =
Hard
Not attempted
11
What is limx0sin5xx\lim_{x \to 0} \frac{\sin 5x}{x}?
Medium
Not attempted
12
What is limx0(1+3x)1/x\lim_{x \to 0} (1 + 3x)^{1/x}?
Hard
Not attempted

Frequently Asked Questions

Why is 0 < |x - x₀| < δ used instead of |x - x₀| < δ?

The condition excludes x = x₀. The limit describes behavior as x approaches x₀, not the value at x₀. The function may not even be defined at x₀.

What's the difference between ε-N and ε-δ definitions?

For sequences, N is discrete (natural number). For functions, δ measures continuous distance. Heine's theorem bridges them.

How do I choose δ when proving a limit?

Work backwards: start with |f(x) - L| < ε, manipulate to get |x - x₀| < something. That 'something' becomes your δ.

Can a function have a limit where it's undefined?

Yes! The limit only concerns behavior approaching x₀. Example: lim(sin x)/x = 1 as x→0.

How do one-sided and two-sided limits relate?

Two-sided limit exists iff both one-sided limits exist and are equal.

Why do we need rigorous ε-δ proofs?

Intuition can be misleading. ε-δ provides a precise criterion for proving theorems and resolving debates.

Study Tips for Success

For Understanding

  • Draw ε-δ diagrams for each example
  • Verbalize the definition: "For any challenge ε, I can respond with δ"
  • Compare with the sequence definition (ε-N)
  • Understand WHY x₀ is excluded (0 < |x - x₀|)

For Problem Solving

  • Always do scratch work first—find δ before writing the proof
  • For products, use min(δ₁, δ₂) when multiple conditions needed
  • Practice standard limit formulas until automatic
  • Use Heine's theorem to disprove limits with counterexample sequences
Quick Reference: Standard Limits
Trigonometric

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1

limx01cosxx2=12\lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}

limx0arcsinxx=1\lim_{x \to 0} \frac{\arcsin x}{x} = 1

limx0arctanxx=1\lim_{x \to 0} \frac{\arctan x}{x} = 1

Exponential

limx0(1+x)1/x=e\lim_{x \to 0} (1+x)^{1/x} = e

limx(1+1x)x=e\lim_{x \to \infty} (1+\frac{1}{x})^x = e

limx0ex1x=1\lim_{x \to 0} \frac{e^x-1}{x} = 1

limx0ax1x=lna\lim_{x \to 0} \frac{a^x-1}{x} = \ln a

limx0+xx=1\lim_{x \to 0^+} x^x = 1

Logarithmic

limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1

limx0(1+x)α1x=α\lim_{x \to 0} \frac{(1+x)^\alpha - 1}{x} = \alpha

limxlnxxα=0\lim_{x \to \infty} \frac{\ln x}{x^\alpha} = 0

limx0+xlnx=0\lim_{x \to 0^+} x \ln x = 0

limxxnex=0\lim_{x \to \infty} \frac{x^n}{e^x} = 0

Essential Formulas to Memorize
The ε-δ Definition
limxx0f(x)=Lε>0,δ>0:\lim_{x \to x_0} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0:
0<xx0<δf(x)L<ε0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon
Heine's Theorem
limxx0f(x)=L\lim_{x \to x_0} f(x) = L \Leftrightarrow

For all {xₙ} → x₀ (xₙ ≠ x₀): f(xₙ) → L