MathIsimple
CALC-3.2
3-4 hours

Properties and Operations of Function Limits

Master the fundamental properties that make limits computable.

Learning Objectives
  • Prove and apply the uniqueness of function limits
  • Understand and use local boundedness of limits
  • Apply sign preservation theorems in proofs
  • Master all arithmetic operations on limits
  • Use the squeeze theorem to evaluate difficult limits
  • Apply the Cauchy criterion for function limits

1. Uniqueness of Function Limits

The first fundamental property: if a limit exists, it is unique. A function cannot approach two different values at the same point.

Theorem 3.4: Uniqueness of Function Limits

If limxx0f(x)=L1\lim_{x \to x_0} f(x) = L_1 and limxx0f(x)=L2\lim_{x \to x_0} f(x) = L_2, then L1=L2L_1 = L_2.

Proof of Theorem 3.4:

Suppose L1L2L_1 \neq L_2. Let ε=L1L2/2>0\varepsilon = |L_1 - L_2|/2 > 0.

By definitions, δ1,δ2>0\exists \delta_1, \delta_2 > 0 such that:

0<xx0<δif(x)Li<ε0 < |x - x_0| < \delta_i \Rightarrow |f(x) - L_i| < \varepsilon

Let δ=min(δ1,δ2)\delta = \min(\delta_1, \delta_2). For 0<xx0<δ0 < |x - x_0| < \delta:

L1L2f(x)L1+f(x)L2<2ε=L1L2|L_1 - L_2| \leq |f(x) - L_1| + |f(x) - L_2| < 2\varepsilon = |L_1 - L_2|

Contradiction! So L1=L2L_1 = L_2. ∎

Remark 3.4: Importance

Uniqueness lets us write "THE limit" and use limits in equations unambiguously.

2. Local Boundedness

If a limit exists, the function cannot "blow up" near the limit point.

Theorem 3.5: Local Boundedness

If limxx0f(x)=L\lim_{x \to x_0} f(x) = L, then f is locally bounded:

δ>0,M>0:0<xx0<δf(x)M\exists \delta > 0, M > 0: 0 < |x - x_0| < \delta \Rightarrow |f(x)| \leq M
Proof of Theorem 3.5:

Take ε=1\varepsilon = 1. δ>0\exists \delta > 0: 0<xx0<δf(x)L<10 < |x - x_0| < \delta \Rightarrow |f(x) - L| < 1.

By triangle inequality: f(x)f(x)L+L<1+L|f(x)| \leq |f(x) - L| + |L| < 1 + |L|.

So M=1+LM = 1 + |L| works. ∎

Remark 3.5: Local ≠ Global

f(x)=1/xf(x) = 1/x has limit 1 at x = 1, but is unbounded on (0, ∞).

Corollary 3.2: Bounded × Zero = Zero

If limf(x)=0\lim f(x) = 0 and g is bounded near x0x_0, then limf(x)g(x)=0\lim f(x)g(x) = 0.

Example 3.6: Application

If limx0f(x)=3\lim_{x \to 0} f(x) = 3, then f(x)<4|f(x)| < 4 near 0.

By local boundedness: f(x)<1+3=4|f(x)| < 1 + |3| = 4 in some U'(0, δ).

3. Sign Preservation

If a limit is positive (or negative), the function has the same sign near the limit point.

Theorem 3.6: Sign Preservation (Limit → Function)

If limxx0f(x)=L>0\lim_{x \to x_0} f(x) = L > 0, then δ>0\exists \delta > 0:

0<xx0<δf(x)>00 < |x - x_0| < \delta \Rightarrow f(x) > 0
Proof of Theorem 3.6:

Take ε=L/2>0\varepsilon = L/2 > 0. Then δ\exists \delta: f(x)L<L/2|f(x) - L| < L/2.

So L/2<f(x)<3L/2L/2 < f(x) < 3L/2. Since L > 0: f(x)>L/2>0f(x) > L/2 > 0. ∎

Theorem 3.7: Sign Preservation (Function → Limit)

If f(x)0f(x) \geq 0 near x0x_0 and limit exists, then limf(x)0\lim f(x) \geq 0.

Warning: Strict Inequality NOT Preserved

f(x) < g(x) does NOT imply lim f < lim g.

Example: 0 < x² for x ≠ 0, but lim 0 = lim x² = 0.

Theorem 3.8: Order Preservation

If f(x)g(x)f(x) \leq g(x) near x0x_0 and both limits exist, then limflimg\lim f \leq \lim g.

Example 3.7: Using Sign Preservation

If limx2f(x)=5\lim_{x \to 2} f(x) = 5, show f(x) > 3 near x = 2.

Let g(x) = f(x) - 3. Then lim g = 5 - 3 = 2 > 0.

By sign preservation: g(x) > 0 near 2, so f(x) > 3. ∎

4. Arithmetic Operations on Limits

Theorem 3.9: Limit Laws

If limf(x)=a\lim f(x) = a and limg(x)=b\lim g(x) = b, then:

lim[f(x)±g(x)]=a±b\lim [f(x) \pm g(x)] = a \pm b
lim[f(x)g(x)]=ab\lim [f(x) \cdot g(x)] = a \cdot b
limf(x)g(x)=ab(b0)\lim \frac{f(x)}{g(x)} = \frac{a}{b} \quad (b \neq 0)
lim[cf(x)]=ca\lim [c \cdot f(x)] = c \cdot a
lim[f(x)]n=an\lim [f(x)]^n = a^n
Proof of Sum Rule:

Given ε > 0, find δ₁, δ₂ such that |f(x) - a| < ε/2 and |g(x) - b| < ε/2.

For δ = min(δ₁, δ₂):

f(x)+g(x)(a+b)f(x)a+g(x)b<ε2+ε2=ε|f(x) + g(x) - (a+b)| \leq |f(x)-a| + |g(x)-b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
Example 3.8: Direct Application

Find limx3(x22x+4)\lim_{x \to 3} (x^2 - 2x + 4).

limx3(x22x+4)=96+4=7\lim_{x \to 3} (x^2 - 2x + 4) = 9 - 6 + 4 = 7
Example 3.9: Factor First

Find limx2x2+3x10x2\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2}.

Factor: x2+3x10=(x2)(x+5)x^2 + 3x - 10 = (x-2)(x+5)

limx2(x2)(x+5)x2=limx2(x+5)=7\lim_{x \to 2} \frac{(x-2)(x+5)}{x-2} = \lim_{x \to 2} (x+5) = 7
Example 3.10: Rationalize

Find limx4x4x2\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}.

x4x2x+2x+2=x+24\frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} = \sqrt{x} + 2 \to 4
Corollary 3.3: Polynomial Limits

For polynomial P(x): limxcP(x)=P(c)\lim_{x \to c} P(x) = P(c).

Corollary 3.4: Rational Limits

For R(x) = P(x)/Q(x) with Q(c) ≠ 0: limxcR(x)=R(c)\lim_{x \to c} R(x) = R(c).

5. The Squeeze Theorem

The Squeeze Theorem is powerful for limits involving oscillating functions or products.

Theorem 3.10: Squeeze Theorem

If f(x)g(x)h(x)f(x) \leq g(x) \leq h(x) near x0x_0 and limf(x)=limh(x)=L\lim f(x) = \lim h(x) = L, then:

limxx0g(x)=L\lim_{x \to x_0} g(x) = L
Proof of Theorem 3.10:

Given ε > 0, find δ such that L - ε < f(x) and h(x) < L + ε near x₀.

Since f ≤ g ≤ h:

Lε<f(x)g(x)h(x)<L+εL - \varepsilon < f(x) \leq g(x) \leq h(x) < L + \varepsilon

So |g(x) - L| < ε. ∎

When to Use Squeeze
  • Functions with sin, cos (bounded oscillation)
  • Products: (→ 0) × (bounded)
  • When direct methods fail
Example 3.11: Classic: x·sin(1/x)

Find limx0xsin(1/x)\lim_{x \to 0} x \sin(1/x).

Since 1sin(1/x)1-1 \leq \sin(1/x) \leq 1:

xxsin(1/x)x-|x| \leq x \sin(1/x) \leq |x|

Both bounds → 0. By Squeeze: limit = 0.

Example 3.12: x²·cos(1/x²)

Find limx0x2cos(1/x2)\lim_{x \to 0} x^2 \cos(1/x^2).

x2x2cos(1/x2)x20-x^2 \leq x^2 \cos(1/x^2) \leq x^2 \to 0
Example 3.13: At Infinity

Find limx+sinxx\lim_{x \to +\infty} \frac{\sin x}{x}.

1xsinxx1x0\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x} \to 0

6. Cauchy Criterion

The Cauchy criterion characterizes limit existence: values get arbitrarily close to EACH OTHER near the limit point.

Theorem 3.11: Cauchy Criterion

limxx0f(x)\lim_{x \to x_0} f(x) exists iff:

ε>0,δ>0:x,xU(x0,δ)f(x)f(x)<ε\forall \varepsilon > 0, \exists \delta > 0: x', x'' \in U'(x_0, \delta) \Rightarrow |f(x') - f(x'')| < \varepsilon
Proof of (⇒):

If lim f = L, find δ: |f(x) - L| < ε/2 for x ∈ U'(x₀, δ).

Then |f(x') - f(x'')| ≤ |f(x') - L| + |f(x'') - L| < ε. ∎

Theorem 3.12: Cauchy at Infinity

limx+f(x)\lim_{x \to +\infty} f(x) exists iff:

ε>0,M>0:x,x>Mf(x)f(x)<ε\forall \varepsilon > 0, \exists M > 0: x', x'' > M \Rightarrow |f(x') - f(x'')| < \varepsilon
Example 3.14: Disproving with Cauchy

Show limx+cos(x)\lim_{x \to +\infty} \cos(x) does not exist.

Take ε₀ = 1. For any M, let x' = 2πk, x'' = π + 2πk (k large).

cos(2πk)cos(π+2πk)=1(1)=2>1|\cos(2\pi k) - \cos(\pi + 2\pi k)| = |1 - (-1)| = 2 > 1

Cauchy fails, so limit DNE. ∎

Example 3.15: Proving with Cauchy

Show limx+1/x\lim_{x \to +\infty} 1/x exists.

For x', x'' > M = 2/ε:

1x1x1x+1x<ε\left|\frac{1}{x'} - \frac{1}{x''}\right| \leq \frac{1}{x'} + \frac{1}{x''} < \varepsilon
Remark 3.8: When to Use Cauchy
  • Prove existence without knowing the limit value
  • Prove non-existence for oscillating functions

7. Additional Properties

Theorem 3.13: Composite Limits

If limxx0g(x)=L\lim_{x \to x_0} g(x) = L and f continuous at L, then limf(g(x))=f(L)\lim f(g(x)) = f(L).

Example 3.16: Composite

Find limx0esinx\lim_{x \to 0} e^{\sin x}.

Since sin x → 0 and eˣ is continuous: esinxe0=1e^{\sin x} \to e^0 = 1.

Theorem 3.14: Absolute Value

If limf(x)=0\lim |f(x)| = 0, then limf(x)=0\lim f(x) = 0.

Example 3.17: Using |f|

limx0xcos(1/x)=0\lim_{x \to 0} x\cos(1/x) = 0

xcos(1/x)x0|x\cos(1/x)| \leq |x| \to 0, so limit = 0.

Example 3.18: Combined Techniques

Find limx0sin3xsin2x\lim_{x \to 0} \frac{\sin 3x}{\sin 2x}.

sin3xsin2x=sin3x3x2xsin2x321132=32\frac{\sin 3x}{\sin 2x} = \frac{\sin 3x}{3x} \cdot \frac{2x}{\sin 2x} \cdot \frac{3}{2} \to 1 \cdot 1 \cdot \frac{3}{2} = \frac{3}{2}
Example 3.19: More Practice

Find limx01cosxxsinx\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}.

Use equivalences: 1 - cos x ~ x²/2, sin x ~ x

1cosxxsinxx2/2xx=12\frac{1 - \cos x}{x \sin x} \sim \frac{x^2/2}{x \cdot x} = \frac{1}{2}

8. More Worked Examples

Example 3.20: Polynomial Division

Find limx1x31x1\lim_{x \to 1} \frac{x^3 - 1}{x - 1}.

Solution: Factor using difference of cubes:

x31=(x1)(x2+x+1)x^3 - 1 = (x - 1)(x^2 + x + 1)
limx1(x1)(x2+x+1)x1=limx1(x2+x+1)=1+1+1=3\lim_{x \to 1} \frac{(x-1)(x^2 + x + 1)}{x - 1} = \lim_{x \to 1} (x^2 + x + 1) = 1 + 1 + 1 = 3
Example 3.21: Higher Order Roots

Find limx8x32x8\lim_{x \to 8} \frac{\sqrt[3]{x} - 2}{x - 8}.

Solution: Let u = ∛x, so x = u³ and x → 8 means u → 2.

x32x8=u2u38=u2(u2)(u2+2u+4)=1u2+2u+4\frac{\sqrt[3]{x} - 2}{x - 8} = \frac{u - 2}{u^3 - 8} = \frac{u - 2}{(u-2)(u^2 + 2u + 4)} = \frac{1}{u^2 + 2u + 4}

As u → 2:

lim=14+4+4=112\lim = \frac{1}{4 + 4 + 4} = \frac{1}{12}
Example 3.22: Double Rationalization

Find limx01+x1xx\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}.

Solution: Multiply by conjugate:

1+x1xx1+x+1x1+x+1x\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \cdot \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}
=(1+x)(1x)x(1+x+1x)=2xx(1+x+1x)=21+x+1x= \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}

As x → 0: 21+1=1\frac{2}{1 + 1} = 1

Example 3.23: Exponential and Trig

Find limx0ex1sinx\lim_{x \to 0} \frac{e^x - 1}{\sin x}.

Solution: Use standard limits:

ex1sinx=ex1xxsinx\frac{e^x - 1}{\sin x} = \frac{e^x - 1}{x} \cdot \frac{x}{\sin x}

As x → 0: both factors → 1, so limit = 1.

Example 3.24: Logarithmic

Find limx1lnxx1\lim_{x \to 1} \frac{\ln x}{x - 1}.

Solution: Let t = x - 1, so x = 1 + t and x → 1 means t → 0:

lnxx1=ln(1+t)t1 as t0\frac{\ln x}{x - 1} = \frac{\ln(1 + t)}{t} \to 1 \text{ as } t \to 0
Example 3.25: Nested Functions

Find limx0tan(sinx)x\lim_{x \to 0} \frac{\tan(\sin x)}{x}.

tan(sinx)x=tan(sinx)sinxsinxx\frac{\tan(\sin x)}{x} = \frac{\tan(\sin x)}{\sin x} \cdot \frac{\sin x}{x}

As x → 0: sin x → 0, so tan(sin x)/(sin x) → 1. Also sin x/x → 1.

Limit = 1 × 1 = 1.

Example 3.26: Power Form 1^∞

Find limx0(1+2x)1/x\lim_{x \to 0} (1 + 2x)^{1/x}.

Solution: This is 1^∞ form. Rewrite:

(1+2x)1/x=[(1+2x)1/(2x)]2(1 + 2x)^{1/x} = [(1 + 2x)^{1/(2x)}]^2

As x → 0, 2x → 0, so (1 + 2x)^{1/(2x)} → e.

Limit = e² .

Example 3.27: Form 0/0 with Trig

Find limx0tanxsinxx3\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.

tanxsinx=sinxcosxsinx=sinx1cosxcosx\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \cdot \frac{1 - \cos x}{\cos x}

Use sin x ~ x, 1 - cos x ~ x²/2, cos x → 1:

sinx(1cosx)x3cosxxx2/2x31=12\frac{\sin x(1 - \cos x)}{x^3 \cos x} \sim \frac{x \cdot x^2/2}{x^3 \cdot 1} = \frac{1}{2}
Example 3.28: At Infinity

Find limx+(x+1x1)x\lim_{x \to +\infty} \left(\frac{x+1}{x-1}\right)^x.

Solution: This is 1^∞ form. Write:

x+1x1=1+2x1\frac{x+1}{x-1} = 1 + \frac{2}{x-1}
(1+2x1)x=[(1+2x1)(x1)/2]2x/(x1)\left(1 + \frac{2}{x-1}\right)^x = \left[\left(1 + \frac{2}{x-1}\right)^{(x-1)/2}\right]^{2x/(x-1)}

As x → +∞: (x-1)/2 → ∞, so inner part → e.

And 2x/(x-1) → 2. So limit = e².

Example 3.29: Squeeze with Absolute Value

Find limx0x2sin(1/x2)cos(1/x)\lim_{x \to 0} x^2 \sin(1/x^2) \cos(1/x).

Solution: Both sin and cos are bounded by [-1, 1]:

x2sin(1/x2)cos(1/x)x211=x20|x^2 \sin(1/x^2) \cos(1/x)| \leq x^2 \cdot 1 \cdot 1 = x^2 \to 0

By squeeze: limit = 0.

9. Detailed Proofs of Limit Laws

Proof of Product Rule: lim(fg) = (lim f)(lim g):

Let lim f = a and lim g = b. We show lim fg = ab.

Write:

f(x)g(x)ab=f(x)g(x)f(x)b+f(x)bab=f(x)[g(x)b]+b[f(x)a]f(x)g(x) - ab = f(x)g(x) - f(x)b + f(x)b - ab = f(x)[g(x)-b] + b[f(x)-a]

By local boundedness, |f(x)| ≤ M near x₀.

Given ε > 0, choose δ such that:

  • |f(x) - a| < ε/(2|b| + 1)
  • |g(x) - b| < ε/(2M)
f(x)g(x)abMε2M+bε2b+1<ε2+ε2=ε|f(x)g(x) - ab| \leq M \cdot \frac{\varepsilon}{2M} + |b| \cdot \frac{\varepsilon}{2|b|+1} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
Proof of Quotient Rule: lim(f/g) = (lim f)/(lim g) when lim g ≠ 0:

First prove: if lim g = b ≠ 0, then lim(1/g) = 1/b.

By sign preservation, |g(x)| > |b|/2 near x₀.

1g(x)1b=bg(x)bg(x)<g(x)bbb/2=2g(x)bb2\left|\frac{1}{g(x)} - \frac{1}{b}\right| = \frac{|b - g(x)|}{|b||g(x)|} < \frac{|g(x) - b|}{|b| \cdot |b|/2} = \frac{2|g(x) - b|}{b^2}

Given ε, choose δ: |g(x) - b| < εb²/2. Then |1/g - 1/b| < ε.

Then lim(f/g) = lim(f · 1/g) = (lim f)(lim 1/g) = a · (1/b) = a/b. ∎

Remark 3.9: Why These Proofs Matter
  • Understand the logic behind computational rules
  • See how local boundedness and sign preservation are used
  • Be able to prove similar results on exams

10. Common Mistakes to Avoid

Mistake 1: Using Quotient Rule When Denominator → 0

Wrong: lim_{x→1} (x²-1)/(x-1) = (1-1)/(1-1) = 0/0 = ???

Correct: Factor first: (x²-1)/(x-1) = x+1 → 2.

Mistake 2: Assuming Strict Inequality Preserved

Wrong: Since x² > 0 for x ≠ 0, lim x² > 0.

Correct: We can only say lim x² ≥ 0. In fact, lim_{x→0} x² = 0.

Mistake 3: Incorrect Squeeze Bounds

Wrong: -1 ≤ sin(1/x) ≤ 1, so -1 ≤ x sin(1/x) ≤ 1.

Correct: Multiply by |x|: -|x| ≤ x sin(1/x) ≤ |x|.

Mistake 4: Confusing Local and Global Properties

Wrong: lim_{x→1} f(x) = 2 implies f is bounded on ℝ.

Correct: f is only guaranteed bounded NEAR x = 1, not everywhere.

Mistake 5: Forgetting Conditions

Wrong: lim f(g(x)) = f(lim g(x)) always.

Correct: Only when f is continuous at lim g(x).

11. Preview: Application to Continuity

The limit properties we've studied are essential for understanding continuity (Chapter 3.3) and its consequences.

Remark 3.10: How Limit Properties Connect to Continuity
  • Sum/Product: Sums and products of continuous functions are continuous
  • Quotient: Quotients are continuous where denominator ≠ 0
  • Composite: Compositions of continuous functions are continuous
  • Squeeze: Used to prove sin x/x → 1 (key for derivatives)
Example 3.30: Continuity Application

Show that f(x) = x² sin(1/x) for x ≠ 0, f(0) = 0 is continuous at 0.

Solution: By squeeze, lim_{x→0} x² sin(1/x) = 0.

Since f(0) = 0 = lim_{x→0} f(x), f is continuous at 0. ∎

12. Study Guide and Key Formulas

Quick Reference: Key Theorems
Uniqueness

If limit exists, it's unique

Local Boundedness

Limit exists ⟹ |f| ≤ M near x₀

Sign Preservation

L > 0 ⟹ f(x) > 0 near x₀

Order Preservation

f ≤ g ⟹ lim f ≤ lim g

Limit Laws Summary
lim(f±g)=limf±limg\lim(f \pm g) = \lim f \pm \lim g
lim(fg)=(limf)(limg)\lim(f \cdot g) = (\lim f)(\lim g)
limfg=limflimg(limg0)\lim\frac{f}{g} = \frac{\lim f}{\lim g} \quad (\lim g \neq 0)
limfn=(limf)n\lim f^n = (\lim f)^n
Problem-Solving Strategies
  • 0/0 form: Factor, rationalize, or use L'Hôpital
  • ∞/∞ form: Divide by highest power
  • Oscillating: Use squeeze theorem
  • 1^∞ form: Rewrite using e^{ln}
  • Standard limits: sin x/x → 1, etc.

13. Extended Squeeze Theorem Applications

Example 3.31: Floor Function Limit

Find limx+xx\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x}.

Solution: Recall x - 1 < ⌊x⌋ ≤ x. Dividing by x (x > 0):

x1x<xx1\frac{x-1}{x} < \frac{\lfloor x \rfloor}{x} \leq 1
11x<xx11 - \frac{1}{x} < \frac{\lfloor x \rfloor}{x} \leq 1

As x → +∞: 1 - 1/x → 1. By Squeeze: limit = 1.

Example 3.32: Trigonometric Product

Find limx0sinxsin2xsin3xx3\lim_{x \to 0} \frac{\sin x \sin 2x \sin 3x}{x^3}.

Solution: Write as product of standard limits:

sinxsin2xsin3xx3=sinxxsin2x2x2sin3x3x3\frac{\sin x \sin 2x \sin 3x}{x^3} = \frac{\sin x}{x} \cdot \frac{\sin 2x}{2x} \cdot 2 \cdot \frac{\sin 3x}{3x} \cdot 3

As x → 0: each sin(kx)/(kx) → 1.

lim=11213=6\lim = 1 \cdot 1 \cdot 2 \cdot 1 \cdot 3 = 6
Example 3.33: Exponential Squeeze

Show limx+xnex=0\lim_{x \to +\infty} \frac{x^n}{e^x} = 0 for any n ∈ ℕ.

Proof: For x > 2n, we have eˣ > x^{2n}/(2n)! (from Taylor series).

0<xnex<xn(2n)!x2n=(2n)!xn00 < \frac{x^n}{e^x} < \frac{x^n (2n)!}{x^{2n}} = \frac{(2n)!}{x^n} \to 0

By Squeeze: limit = 0. Exponentials dominate polynomials. ∎

Example 3.34: Oscillation at Zero

Find limx0x2sin(1x)cos(1x2)\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) \cos\left(\frac{1}{x^2}\right).

Solution: |sin(1/x)| ≤ 1 and |cos(1/x²)| ≤ 1, so:

x2sin(1/x)cos(1/x2)x20|x^2 \sin(1/x) \cos(1/x^2)| \leq x^2 \to 0

By squeeze: limit = 0.

14. More Detailed Limit Law Examples

Example 3.35: Combining Multiple Laws

Find limx1x41x31\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1}.

Solution: Factor both:

x41=(x1)(x+1)(x2+1)x^4 - 1 = (x-1)(x+1)(x^2+1)
x31=(x1)(x2+x+1)x^3 - 1 = (x-1)(x^2+x+1)
x41x31=(x+1)(x2+1)x2+x+1\frac{x^4-1}{x^3-1} = \frac{(x+1)(x^2+1)}{x^2+x+1}

At x = 1: 223=43\frac{2 \cdot 2}{3} = \frac{4}{3}

Example 3.36: Rational with Higher Powers

Find limx2x532x2\lim_{x \to 2} \frac{x^5 - 32}{x - 2}.

Method 1: Factor using a⁵ - b⁵ = (a-b)(a⁴ + a³b + a²b² + ab³ + b⁴):

x532=(x2)(x4+2x3+4x2+8x+16)x^5 - 32 = (x-2)(x^4 + 2x^3 + 4x^2 + 8x + 16)

At x = 2: 16 + 16 + 16 + 16 + 16 = 80.

Method 2: This is f'(2) where f(x) = x⁵ and derivative is 5x⁴ = 5(16) = 80.

Example 3.37: Double Limit

Find limx01+sinx1x\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{x}.

Solution: Rationalize:

1+sinx1x1+sinx+11+sinx+1=sinxx(1+sinx+1)\frac{\sqrt{1+\sin x} - 1}{x} \cdot \frac{\sqrt{1+\sin x} + 1}{\sqrt{1+\sin x} + 1} = \frac{\sin x}{x(\sqrt{1+\sin x} + 1)}
=sinxx11+sinx+1112=12= \frac{\sin x}{x} \cdot \frac{1}{\sqrt{1+\sin x} + 1} \to 1 \cdot \frac{1}{2} = \frac{1}{2}
Example 3.38: Trigonometric Identity

Find limx01cos3xxsin2x\lim_{x \to 0} \frac{1 - \cos^3 x}{x \sin 2x}.

Solution: Factor 1 - cos³x = (1 - cos x)(1 + cos x + cos²x):

(1cosx)(1+cosx+cos2x)x2sinxcosx\frac{(1-\cos x)(1 + \cos x + \cos^2 x)}{x \cdot 2\sin x \cos x}

Use 1 - cos x ~ x²/2, sin x ~ x, cos x → 1:

(x2/2)(3)x2x1=3x2/22x2=34\frac{(x^2/2)(3)}{x \cdot 2x \cdot 1} = \frac{3x^2/2}{2x^2} = \frac{3}{4}

15. Advanced Cauchy Criterion Applications

Example 3.39: Non-existence via Cauchy

Prove limx+sin(x2)\lim_{x \to +\infty} \sin(x^2) does not exist.

Proof: Take ε₀ = 1. For any M > 0, choose k such that √(2πk) > M.

Let x' = √(2πk) and x'' = √(2πk + π/2).

Then (x')² = 2πk and (x'')² = 2πk + π/2.

sin(2πk)sin(2πk+π/2)=01=1ε0|\sin(2\pi k) - \sin(2\pi k + \pi/2)| = |0 - 1| = 1 \geq \varepsilon_0

Cauchy criterion fails, so limit DNE. ∎

Example 3.40: Existence via Cauchy

Prove limx+sinxx\lim_{x \to +\infty} \frac{\sin x}{x} exists using Cauchy.

Proof: For x', x'' > M:

sinxxsinxx1x+1x<2M\left|\frac{\sin x'}{x'} - \frac{\sin x''}{x''}\right| \leq \frac{1}{x'} + \frac{1}{x''} < \frac{2}{M}

Choose M = 2/ε. Then difference < ε. Cauchy is satisfied. ∎

Remark 3.11: Cauchy vs Direct Proofs

Cauchy criterion is useful when:

  • You don't know the limit value
  • Direct ε-δ seems difficult
  • You want to prove non-existence

For existence, Cauchy doesn't tell you WHAT the limit is—just that it exists.

16. How Properties Relate to Each Other

Property Dependency Map
ε-δ Definition → Uniqueness

Uniqueness is derived directly from ε-δ by contradiction

ε-δ Definition → Local Boundedness

Take ε = 1 in the definition

ε-δ Definition → Sign Preservation

Take ε = |L|/2 when L ≠ 0

Local Boundedness → Product Rule

Bounded factor controls the product

Sign Preservation → Quotient Rule

Ensures denominator bounded away from 0

Order Preservation → Squeeze Theorem

Squeeze is a special case of order preservation

17. Detailed Solution Techniques

Technique 1: Factoring

Key Formulas:

a² - b² = (a-b)(a+b)

a³ - b³ = (a-b)(a² + ab + b²)

a³ + b³ = (a+b)(a² - ab + b²)

aⁿ - bⁿ = (a-b)(aⁿ⁻¹ + aⁿ⁻²b + ... + bⁿ⁻¹)

Technique 2: Rationalization

Multiply by conjugate when you see √ in numerator or denominator:

abca+ba+b=abc(a+b)\frac{\sqrt{a} - \sqrt{b}}{c} \cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{c(\sqrt{a} + \sqrt{b})}

This eliminates radicals by creating a difference of squares.

Technique 3: Standard Limit Substitution

Replace with standard forms when approaching indeterminate:

sinuu1 as u0\frac{\sin u}{u} \to 1 \text{ as } u \to 0
eu1u1 as u0\frac{e^u - 1}{u} \to 1 \text{ as } u \to 0
ln(1+u)u1 as u0\frac{\ln(1+u)}{u} \to 1 \text{ as } u \to 0
(1+u)1/ue as u0(1+u)^{1/u} \to e \text{ as } u \to 0
Technique 4: Equivalent Infinitesimals

As x → 0, these are equivalent (use in products only!):

sin x ~ x

tan x ~ x

arcsin x ~ x

arctan x ~ x

1 - cos x ~ x²/2

eˣ - 1 ~ x

ln(1+x) ~ x

(1+x)ᵅ - 1 ~ αx

Technique 5: Handling 1^∞ Form

When you see (1 + something)^{big}, use:

(1+f(x))g(x)=eg(x)ln(1+f(x))(1 + f(x))^{g(x)} = e^{g(x) \ln(1 + f(x))}

Then use ln(1 + u) ~ u when u → 0:

g(x)ln(1+f(x))g(x)f(x)g(x) \ln(1 + f(x)) \approx g(x) \cdot f(x)

The limit becomes e^{lim g(x)f(x)}.

18. More Worked Examples

Example 3.41: Power Form

Find limx0(sinxx)1/x2\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}.

Solution: As x → 0, sin x/x → 1, so this is 1^∞ form.

Write as exponential:

(sinxx)1/x2=e1x2ln(sinxx)\left(\frac{\sin x}{x}\right)^{1/x^2} = e^{\frac{1}{x^2} \ln\left(\frac{\sin x}{x}\right)}

Need to find: limx0ln(sinx/x)x2\lim_{x \to 0} \frac{\ln(\sin x/x)}{x^2}

Using Taylor: sin x/x = 1 - x²/6 + O(x⁴), so ln(sin x/x) ~ -x²/6.

ln(sinx/x)x216\frac{\ln(\sin x/x)}{x^2} \to -\frac{1}{6}

Final answer: e1/6=1e6e^{-1/6} = \frac{1}{\sqrt[6]{e}}

Example 3.42: L'Hôpital Preview

Find limx0xarctanxx3\lim_{x \to 0} \frac{x - \arctan x}{x^3}.

Solution: Taylor: arctan x = x - x³/3 + O(x⁵)

xarctanx=x(xx33+O(x5))=x33+O(x5)x - \arctan x = x - (x - \frac{x^3}{3} + O(x^5)) = \frac{x^3}{3} + O(x^5)
xarctanxx3=x3/3+O(x5)x3=13+O(x2)13\frac{x - \arctan x}{x^3} = \frac{x^3/3 + O(x^5)}{x^3} = \frac{1}{3} + O(x^2) \to \frac{1}{3}
Example 3.43: Product of Limits

Find limx0(ex1)(ln(1+x))x2\lim_{x \to 0} \frac{(e^x - 1)(\ln(1+x))}{x^2}.

(ex1)(ln(1+x))x2=ex1xln(1+x)x\frac{(e^x - 1)(\ln(1+x))}{x^2} = \frac{e^x - 1}{x} \cdot \frac{\ln(1+x)}{x}

As x → 0: (eˣ - 1)/x → 1 and ln(1+x)/x → 1.

Limit = 1 · 1 = 1.

Example 3.44: At Negative Infinity

Find limxx2+x+x\lim_{x \to -\infty} \sqrt{x^2 + x} + x.

Solution: For x < 0, √(x²) = |x| = -x.

x2+x=x1+1/x=x1+1/x\sqrt{x^2 + x} = |x|\sqrt{1 + 1/x} = -x\sqrt{1 + 1/x}
x2+x+x=x1+1/x+x=x(11+1/x)\sqrt{x^2 + x} + x = -x\sqrt{1 + 1/x} + x = x(1 - \sqrt{1 + 1/x})

Rationalize: multiply by (1 + √(1+1/x))/(1 + √(1+1/x)):

=x(1(1+1/x))1+1+1/x=11+1+1/x12= \frac{x(1 - (1 + 1/x))}{1 + \sqrt{1 + 1/x}} = \frac{-1}{1 + \sqrt{1 + 1/x}} \to \frac{-1}{2}
Example 3.45: Mixed Forms

Find limx0+xxx\lim_{x \to 0^+} x^{x^x}.

Solution: First find lim xˣ as x → 0⁺.

xx=exlnxe0=1 since xlnx0x^x = e^{x \ln x} \to e^0 = 1 \text{ since } x\ln x \to 0

So x^{xˣ} → x¹ = x → 0 as x → 0⁺.

But wait—more carefully: x^{xˣ} = e^{xˣ ln x}.

As x → 0⁺: xˣ → 1 and ln x → -∞, but the product: xˣ · ln x → 1 · (-∞) = -∞.

So x^{xˣ} → e^{-∞} = 0.

19. Practice Problems

Problem Set A: Basic Limits
  1. limx3x29x3\lim_{x \to 3} \frac{x^2 - 9}{x - 3} (Answer: 6)
  2. limx0sin5x3x\lim_{x \to 0} \frac{\sin 5x}{3x} (Answer: 5/3)
  3. limx0e3x12x\lim_{x \to 0} \frac{e^{3x} - 1}{2x} (Answer: 3/2)
  4. limx0ln(1+4x)x\lim_{x \to 0} \frac{\ln(1+4x)}{x} (Answer: 4)
  5. limx1x1x1\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} (Answer: 1/2)
Problem Set B: Intermediate
  1. limx01cos2xxtanx\lim_{x \to 0} \frac{1 - \cos 2x}{x \tan x} (Answer: 2)
  2. limx0(1+3x)2/x\lim_{x \to 0} (1 + 3x)^{2/x} (Answer: e⁶)
  3. limx+(2x+12x1)x\lim_{x \to +\infty} \left(\frac{2x+1}{2x-1}\right)^x (Answer: e)
  4. limx0arctanxxx3\lim_{x \to 0} \frac{\arctan x - x}{x^3} (Answer: -1/3)
  5. limx0x2cot2x\lim_{x \to 0} x^2 \cot^2 x (Answer: 1)
Problem Set C: Advanced
  1. limx0tanxarctanxx3\lim_{x \to 0} \frac{\tan x - \arctan x}{x^3} (Answer: 2/3)
  2. limx0+xsinx\lim_{x \to 0^+} x^{\sin x} (Answer: 1)
  3. limx0exex2xxsinx\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} (Answer: 0)
  4. limx+(x2+xx)\lim_{x \to +\infty} (\sqrt{x^2+x} - x) (Answer: 1/2)
  5. limx01+x31x3x\lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x} (Answer: 2/3)
Problem Set D: Proof Problems
  1. Prove uniqueness using ε-δ:

    If lim f(x) = L₁ and lim f(x) = L₂, prove L₁ = L₂.

  2. Prove local boundedness:

    If lim f(x) = L, prove |f(x)| ≤ |L| + 1 near x₀.

  3. Prove the product rule:

    If lim f = a and lim g = b, prove lim(fg) = ab.

  4. Use Cauchy criterion:

    Prove lim_{x→∞} sin(x²) does not exist.

20. Key Insights and Tips

Insight 1: The Power of Substitution

When evaluating limits, clever substitutions can simplify problems dramatically:

  • Let u = 1/x to convert x → ∞ to u → 0
  • Let t = x - a to center the limit at 0
  • Let u = √x to handle square roots
  • Let u = eˣ to handle exponentials
Insight 2: Recognizing Standard Forms

Many limits reduce to standard forms in disguise:

sin3x5x=35sin3x3x\frac{\sin 3x}{5x} = \frac{3}{5} \cdot \frac{\sin 3x}{3x} → (3/5)·1 = 3/5

(1+2x)3/x=[(1+2x)1/(2x)]6(1 + 2x)^{3/x} = [(1 + 2x)^{1/(2x)}]^6 → e⁶

e5x13x=53e5x15x\frac{e^{5x} - 1}{3x} = \frac{5}{3} \cdot \frac{e^{5x} - 1}{5x} → 5/3

Insight 3: When Things Don't Work

If direct methods fail, consider:

  1. Squeeze theorem for oscillating bounded functions
  2. Cauchy criterion to prove non-existence
  3. Taylor series for complicated expressions
  4. L'Hôpital's rule for 0/0 or ∞/∞ (Chapter 4)
Insight 4: Connection to Derivatives

Many of these limit techniques appear in derivatives:

f(a)=limh0f(a+h)f(a)h=limxaf(x)f(a)xaf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}

Understanding limits is essential for understanding calculus!

21. Reference Tables

Indeterminate Forms
FormStrategy
0/0Factor, rationalize, L'Hôpital, Taylor
∞/∞Divide by highest power, L'Hôpital
0 · ∞Rewrite as 0/0 or ∞/∞
∞ - ∞Combine fractions, factor, rationalize
1^∞Use e^{g·ln(1+f)} with ln(1+u) ~ u
0⁰Use e^{g·ln f}
∞⁰Use e^{g·ln f}
Property Reference
PropertyStatementUse
UniquenessIf limit exists, it's uniqueFoundation
Local BoundednessLimit ⟹ bounded nearbyProduct proofs
Sign PreservationL > 0 ⟹ f > 0 nearbyQuotient proofs
Order Preservationf ≤ g ⟹ lim f ≤ lim gSqueeze theorem
Squeezef ≤ g ≤ h, lim f = lim h = L ⟹ lim g = LOscillating limits
Cauchy|f(x') - f(x'')| < ε near x₀Existence proofs
Essential Standard Limits
Trigonometric

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

limx0tanxx=1\lim_{x \to 0} \frac{\tan x}{x} = 1

limx01cosxx2=12\lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}

limx0arcsinxx=1\lim_{x \to 0} \frac{\arcsin x}{x} = 1

limx0arctanxx=1\lim_{x \to 0} \frac{\arctan x}{x} = 1

Exponential & Logarithmic

limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1

limx0ax1x=lna\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a

limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1

limx0(1+x)1/x=e\lim_{x \to 0} (1+x)^{1/x} = e

limx(1+1x)x=e\lim_{x \to \infty} (1+\frac{1}{x})^x = e

Study Tips for Mastery
For Exam Preparation
  • • Memorize all standard limits
  • • Practice recognizing indeterminate forms
  • • Know when to use each technique
  • • Be able to write formal ε-δ proofs
Common Exam Questions
  • • Prove uniqueness of limits
  • • Prove product/quotient rules
  • • Use Cauchy to prove non-existence
  • • Evaluate limits using properties
What's Next?

In CALC-3.3, we'll use these limit properties to study:

  • Continuity at a point: lim f(x) = f(x₀)
  • Types of discontinuities: removable, jump, essential
  • Operations preserving continuity
  • Continuity of elementary functions
Chapter 3.2 Summary

Fundamental Properties

  • Uniqueness: Limits are unique
  • Local Boundedness: Limit ⟹ bounded near point
  • Sign Preservation: L > 0 ⟹ f(x) > 0 nearby
  • Order Preservation: f ≤ g ⟹ lim f ≤ lim g

Computational Tools

  • Limit Laws: +, −, ×, ÷
  • Squeeze Theorem: f ≤ g ≤ h with same limits
  • Cauchy Criterion: Values cluster together
  • Composite: f(g(x)) → f(lim g)
Practice Quiz: Limit Properties
6
Questions
0
Correct
0%
Accuracy
1
If limxx0f(x)=L\lim_{x \to x_0} f(x) = L, what can we say?
Easy
Not attempted
2
If limxx0f(x)=L>0\lim_{x \to x_0} f(x) = L > 0, then near x0x_0:
Medium
Not attempted
3
What is limx0xsin(1/x)\lim_{x \to 0} x \sin(1/x)?
Medium
Not attempted
4
Cauchy criterion: limit exists iff:
Hard
Not attempted
5
If lim f = a, lim g = b ≠ 0, then lim(f/g) =
Easy
Not attempted
6
Squeeze: if f ≤ g ≤ h and lim f = lim h = L, then:
Easy
Not attempted

FAQs

Local vs global boundedness?

Local: bounded near x₀. Global: bounded on entire domain. Limit implies local only.

When can't we use quotient rule?

When denominator limit is 0. Use L'Hôpital or other techniques then.

Strict inequality preserved?

No! f < g only implies lim f ≤ lim g, not strict inequality.