MathIsimple
π
θ
Δ
ε
Calculus/Improper Integrals/Definition & Properties
CALC-7.1
4-5 hours

Definition and Basic Properties

Understanding improper integrals with infinite limits (Type I) and singular points (Type II), their definitions, properties, and the extension of Newton-Leibniz formula.

Learning Objectives
Define improper integrals with infinite limits (Type I)
Define improper integrals with singular points (Type II)
Apply the Newton-Leibniz formula to improper integrals
Identify and handle mixed improper integrals
Understand basic properties: linearity and splitting
Calculate simple improper integrals directly

1. Introduction: Why Improper Integrals?

The Riemann integral abf(x)dx\int_a^b f(x)\,dx requires two conditions:

  • The interval [a,b][a, b] must be bounded (finite length)
  • The function ff must be bounded on [a,b][a, b]

But many important integrals in mathematics, physics, and probability violate these conditions:

Gaussian Integral

+ex2dx=π\int_{-\infty}^{+\infty} e^{-x^2}\,dx = \sqrt{\pi}

Infinite interval

Arc Length

011xdx=2\int_0^1 \frac{1}{\sqrt{x}}\,dx = 2

Unbounded integrand

Remark 6.1: Two Types of Improper Integrals
  • Type I (Infinite Limits): Integration interval extends to ±\pm\infty
  • Type II (Singular Points): Integrand becomes unbounded at some point(s)

Both types are defined using limits, extending the Newton-Leibniz formula.

2. Type I: Improper Integrals with Infinite Limits

Definition 6.1: Type I Improper Integral (Upper Limit)

Let ff be defined on [a,+)[a, +\infty) and integrable on every [a,b][a, b] for b>ab > a.

If the limit

limb+abf(x)dx\lim_{b \to +\infty} \int_a^b f(x)\,dx

exists and is finite, we say the improper integral a+f(x)dx\int_a^{+\infty} f(x)\,dx converges, and define:

a+f(x)dx=limb+abf(x)dx\int_a^{+\infty} f(x)\,dx = \lim_{b \to +\infty} \int_a^b f(x)\,dx

If the limit does not exist or is infinite, the integral diverges.

Definition 6.2: Type I Improper Integral (Lower Limit)

Similarly, for ff defined on (,b](-\infty, b]:

bf(x)dx=limaabf(x)dx\int_{-\infty}^b f(x)\,dx = \lim_{a \to -\infty} \int_a^b f(x)\,dx
Definition 6.3: Type I Improper Integral (Both Limits)

For ff defined on (,+)(-\infty, +\infty), we split at any point cc:

+f(x)dx=cf(x)dx+c+f(x)dx\int_{-\infty}^{+\infty} f(x)\,dx = \int_{-\infty}^c f(x)\,dx + \int_c^{+\infty} f(x)\,dx

The integral converges if and only if both parts converge independently.

Remark 6.2: Independence of Splitting Point

The choice of cc does not affect convergence or the value. Any cRc \in \mathbb{R} works.

Example 6.1: Basic Type I Integral

Problem: Evaluate 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx

Solution:

1+1x2dx=limb+1b1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx = \lim_{b \to +\infty} \int_1^b \frac{1}{x^2}\,dx
=limb+[1x]1b=limb+(1b+1)=1= \lim_{b \to +\infty} \left[-\frac{1}{x}\right]_1^b = \lim_{b \to +\infty} \left(-\frac{1}{b} + 1\right) = 1

The integral converges with value 11.

Example 6.2: Divergent Type I Integral

Problem: Evaluate 1+1xdx\int_1^{+\infty} \frac{1}{x}\,dx

Solution:

1+1xdx=limb+[lnx]1b=limb+lnb=+\int_1^{+\infty} \frac{1}{x}\,dx = \lim_{b \to +\infty} [\ln x]_1^b = \lim_{b \to +\infty} \ln b = +\infty

The integral diverges.

Example 6.3: Both Limits Infinite

Problem: Evaluate +11+x2dx\int_{-\infty}^{+\infty} \frac{1}{1+x^2}\,dx

Solution:

Split at c=0c = 0:

011+x2dx=lima[arctanx]a0=0(π2)=π2\int_{-\infty}^0 \frac{1}{1+x^2}\,dx = \lim_{a \to -\infty} [\arctan x]_a^0 = 0 - (-\frac{\pi}{2}) = \frac{\pi}{2}
0+11+x2dx=limb+[arctanx]0b=π20=π2\int_0^{+\infty} \frac{1}{1+x^2}\,dx = \lim_{b \to +\infty} [\arctan x]_0^b = \frac{\pi}{2} - 0 = \frac{\pi}{2}

Total: π2+π2=π\frac{\pi}{2} + \frac{\pi}{2} = \pi

Remark 6.3: Warning: Independent Limits

Common Mistake:

For +xdx\int_{-\infty}^{+\infty} x\,dx, one might think:

limR+RRxdx=limR+0=0(WRONG!)\lim_{R \to +\infty} \int_{-R}^R x\,dx = \lim_{R \to +\infty} 0 = 0 \quad \text{(WRONG!)}

This is the Cauchy Principal Value, not the improper integral. The correct evaluation:

0xdx=,0+xdx=+\int_{-\infty}^0 x\,dx = -\infty, \quad \int_0^{+\infty} x\,dx = +\infty

Both diverge, so +xdx\int_{-\infty}^{+\infty} x\,dx diverges.

3. Type II: Improper Integrals with Singular Points

Definition 6.4: Singular Point

A point cc is a singular point (or singularity) of ff if f(x)±f(x) \to \pm\infty as xcx \to c.

Definition 6.5: Type II Improper Integral (Singularity at Left Endpoint)

Let ff be defined on (a,b](a, b] with ff unbounded near x=ax = a.

If the limit

limϵ0+a+ϵbf(x)dx\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x)\,dx

exists and is finite, we say the integral converges and define:

abf(x)dx=limϵ0+a+ϵbf(x)dx\int_a^b f(x)\,dx = \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x)\,dx
Definition 6.6: Type II Improper Integral (Singularity at Right Endpoint)

For ff unbounded near x=bx = b:

abf(x)dx=limϵ0+abϵf(x)dx\int_a^b f(x)\,dx = \lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x)\,dx
Definition 6.7: Type II Improper Integral (Interior Singularity)

If ff has a singularity at c(a,b)c \in (a, b), split the integral:

abf(x)dx=acf(x)dx+cbf(x)dx\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx

The integral converges if and only if both parts converge.

Example 6.4: Singularity at Left Endpoint

Problem: Evaluate 011xdx\int_0^1 \frac{1}{\sqrt{x}}\,dx

Solution:

The function 1/x+1/\sqrt{x} \to +\infty as x0+x \to 0^+.

011xdx=limϵ0+ϵ1x1/2dx\int_0^1 \frac{1}{\sqrt{x}}\,dx = \lim_{\epsilon \to 0^+} \int_\epsilon^1 x^{-1/2}\,dx
=limϵ0+[2x]ϵ1=limϵ0+(22ϵ)=2= \lim_{\epsilon \to 0^+} [2\sqrt{x}]_\epsilon^1 = \lim_{\epsilon \to 0^+} (2 - 2\sqrt{\epsilon}) = 2

The integral converges with value 22.

Example 6.5: Divergent Type II Integral

Problem: Evaluate 011xdx\int_0^1 \frac{1}{x}\,dx

Solution:

011xdx=limϵ0+[lnx]ϵ1=limϵ0+(0lnϵ)=+\int_0^1 \frac{1}{x}\,dx = \lim_{\epsilon \to 0^+} [\ln x]_\epsilon^1 = \lim_{\epsilon \to 0^+} (0 - \ln\epsilon) = +\infty

The integral diverges.

Example 6.6: Interior Singularity

Problem: Evaluate 021(x1)2/3dx\int_0^2 \frac{1}{(x-1)^{2/3}}\,dx

Solution:

Singularity at x=1x = 1. Split:

011(x1)2/3dx=limϵ0+[3(x1)1/3]01ϵ\int_0^1 \frac{1}{(x-1)^{2/3}}\,dx = \lim_{\epsilon \to 0^+} [3(x-1)^{1/3}]_0^{1-\epsilon}
=limϵ0+(3(ϵ)1/33(1)1/3)=03(1)=3= \lim_{\epsilon \to 0^+} (3(-\epsilon)^{1/3} - 3(-1)^{1/3}) = 0 - 3(-1) = 3
121(x1)2/3dx=limϵ0+[3(x1)1/3]1+ϵ2=30=3\int_1^2 \frac{1}{(x-1)^{2/3}}\,dx = \lim_{\epsilon \to 0^+} [3(x-1)^{1/3}]_{1+\epsilon}^2 = 3 - 0 = 3

Total: 3+3=63 + 3 = 6

4. Mixed Improper Integrals

Definition 6.8: Mixed Improper Integral

An integral is mixed if it has both an infinite limit AND a singular point, or multiple singularities.

Strategy: Split the integral so each part has only one "problem" (one infinite limit or one singularity), then check each part independently.

Example 6.7: Mixed Type Integral

Problem: Analyze 0+1x(1+x)dx\int_0^{+\infty} \frac{1}{\sqrt{x}(1+x)}\,dx

Solution:

Issues: singularity at x=0x = 0 AND infinite limit. Split at x=1x = 1:

0+=01+1+\int_0^{+\infty} = \int_0^1 + \int_1^{+\infty}

Near 0: 1x(1+x)1x\frac{1}{\sqrt{x}(1+x)} \approx \frac{1}{\sqrt{x}}, and 011/xdx=2\int_0^1 1/\sqrt{x}\,dx = 2 converges.

Near ∞: 1x(1+x)1x3/2\frac{1}{\sqrt{x}(1+x)} \approx \frac{1}{x^{3/2}}, and 1+1/x3/2dx=2\int_1^{+\infty} 1/x^{3/2}\,dx = 2 converges.

Both parts converge, so the integral converges.

Remark 6.4: Splitting Strategy

When splitting a mixed integral:

  • Choose a splitting point away from singularities
  • Each resulting integral should have only one "problem"
  • All parts must converge for the whole to converge
  • If any part diverges, the whole integral diverges

5. Basic Properties

Theorem 6.1: Linearity

If a+f(x)dx\int_a^{+\infty} f(x)\,dx and a+g(x)dx\int_a^{+\infty} g(x)\,dx both converge, then for constants α,β\alpha, \beta:

a+[αf(x)+βg(x)]dx=αa+f(x)dx+βa+g(x)dx\int_a^{+\infty} [\alpha f(x) + \beta g(x)]\,dx = \alpha\int_a^{+\infty} f(x)\,dx + \beta\int_a^{+\infty} g(x)\,dx
Theorem 6.2: Interval Additivity

For any c(a,+)c \in (a, +\infty):

a+f(x)dx converges    c+f(x)dx converges\int_a^{+\infty} f(x)\,dx \text{ converges} \iff \int_c^{+\infty} f(x)\,dx \text{ converges}

And when convergent: a+f=acf+c+f\int_a^{+\infty} f = \int_a^c f + \int_c^{+\infty} f

Remark 6.5: Convergence is a Tail Property

Whether an improper integral converges depends only on the behavior near the "problem" (∞ or the singularity). Changing the integrand on any bounded interval away from singularities does not affect convergence.

Theorem 6.3: Newton-Leibniz for Improper Integrals

If F(x)=f(x)F'(x) = f(x) on the relevant interval:

Type I:

a+f(x)dx=limx+F(x)F(a)=F(+)F(a)\int_a^{+\infty} f(x)\,dx = \lim_{x \to +\infty} F(x) - F(a) = F(+\infty) - F(a)

Type II (singularity at a):

abf(x)dx=F(b)limxa+F(x)=F(b)F(a+)\int_a^b f(x)\,dx = F(b) - \lim_{x \to a^+} F(x) = F(b) - F(a^+)

6. The p-Integral: A Fundamental Example

Theorem 6.4: p-Integral (Type I)

For the integral with infinite upper limit:

1+1xpdx{converges=1p1if p>1divergesif p1\int_1^{+\infty} \frac{1}{x^p}\,dx \begin{cases} \text{converges} = \frac{1}{p-1} & \text{if } p > 1 \\ \text{diverges} & \text{if } p \leq 1 \end{cases}
Proof:

Case p ≠ 1:

1bxpdx=[x1p1p]1b=b1p11p\int_1^b x^{-p}\,dx = \left[\frac{x^{1-p}}{1-p}\right]_1^b = \frac{b^{1-p} - 1}{1-p}

As b+b \to +\infty:

  • If p>1p > 1: 1p<01-p < 0, so b1p0b^{1-p} \to 0. Limit = 1p1\frac{1}{p-1}
  • If p<1p < 1: 1p>01-p > 0, so b1p+b^{1-p} \to +\infty. Diverges.

Case p = 1: 1b1/xdx=lnb+\int_1^b 1/x\,dx = \ln b \to +\infty. Diverges.

Theorem 6.5: p-Integral (Type II)

For the integral with singularity at 0:

011xpdx{converges=11pif p<1divergesif p1\int_0^1 \frac{1}{x^p}\,dx \begin{cases} \text{converges} = \frac{1}{1-p} & \text{if } p < 1 \\ \text{diverges} & \text{if } p \geq 1 \end{cases}
Remark 6.6: Opposite Conditions!

Critical Observation:

  • Type I (1+1/xp\int_1^{+\infty} 1/x^p): converges when p>1p > 1
  • Type II (011/xp\int_0^1 1/x^p): converges when p<1p < 1

The conditions are opposite! This is a common source of errors.

Example 6.8: Why ∫₀^∞ 1/x² Diverges

Problem: Analyze 0+1x2dx\int_0^{+\infty} \frac{1}{x^2}\,dx

Solution:

Split at x=1x = 1:

  • 1+1/x2dx\int_1^{+\infty} 1/x^2\,dx: converges (p = 2 > 1) ✓
  • 011/x2dx\int_0^1 1/x^2\,dx: diverges (p = 2 ≥ 1) ✗

Since one part diverges, the whole integral diverges.

7. More Worked Examples

Example 6.9: Exponential Decay

Problem: Evaluate 0+exdx\int_0^{+\infty} e^{-x}\,dx

Solution:

0+exdx=limb+[ex]0b=limb+(eb+1)=1\int_0^{+\infty} e^{-x}\,dx = \lim_{b \to +\infty} [-e^{-x}]_0^b = \lim_{b \to +\infty} (-e^{-b} + 1) = 1
Example 6.10: Rational Function

Problem: Evaluate 0+x(1+x2)2dx\int_0^{+\infty} \frac{x}{(1+x^2)^2}\,dx

Solution:

Substitute u=1+x2u = 1 + x^2, du=2xdxdu = 2x\,dx:

0+x(1+x2)2dx=121+duu2=121=12\int_0^{+\infty} \frac{x}{(1+x^2)^2}\,dx = \frac{1}{2}\int_1^{+\infty} \frac{du}{u^2} = \frac{1}{2} \cdot 1 = \frac{1}{2}
Example 6.11: Logarithmic Singularity

Problem: Evaluate 01lnxdx\int_0^1 \ln x\,dx

Solution:

Note lnx\ln x \to -\infty as x0+x \to 0^+, so this is Type II.

01lnxdx=[xlnxx]01=(01)limx0+(xlnxx)\int_0^1 \ln x\,dx = [x\ln x - x]_0^1 = (0 - 1) - \lim_{x \to 0^+}(x\ln x - x)

Since limx0+xlnx=0\lim_{x \to 0^+} x\ln x = 0 (by L'Hôpital):

=1(00)=1= -1 - (0 - 0) = -1
Example 6.12: Double Singularity

Problem: Evaluate 011x(1x)dx\int_0^1 \frac{1}{\sqrt{x(1-x)}}\,dx

Solution:

Singularities at both x=0x = 0 and x=1x = 1.

Near x=0x = 0: 1x(1x)1x\frac{1}{\sqrt{x(1-x)}} \approx \frac{1}{\sqrt{x}}

Near x=1x = 1: 1x(1x)11x\frac{1}{\sqrt{x(1-x)}} \approx \frac{1}{\sqrt{1-x}}

Both are p = 1/2 < 1, so both parts converge.

Using substitution x=sin2θx = \sin^2\theta: the integral equals π\pi.

8. Common Mistakes to Avoid

Mistake 1: Ignoring Singularities

Wrong: Treating 011xdx\int_0^1 \frac{1}{x}\,dx as a regular integral and computing [lnx]01[\ln x]_0^1.

Right: Recognize the singularity at x=0x = 0 and evaluate as limϵ0+[lnx]ϵ1\lim_{\epsilon \to 0^+} [\ln x]_\epsilon^1.

Mistake 2: Confusing p-Test Conditions

Wrong: Thinking 011/xp\int_0^1 1/x^p converges for p>1p > 1.

Right: For Type II (singular), it's p<1p < 1. The conditions are opposite for Type I and Type II!

Mistake 3: Symmetric Cancellation Fallacy

Wrong: Claiming +xdx=0\int_{-\infty}^{+\infty} x\,dx = 0 by symmetry.

Right: Both halves diverge independently. The integral is undefined, not zero. (The symmetric limit gives the Cauchy Principal Value, which is different.)

Mistake 4: Forgetting to Split Mixed Integrals

Wrong: Evaluating 0+1/x2dx\int_0^{+\infty} 1/x^2\,dx as one limit.

Right: Split at x=1x = 1. Check 01\int_0^1 (singular) and 1+\int_1^{+\infty} (infinite) separately.

Mistake 5: Missing Interior Singularities

Wrong: Computing 111/x2dx\int_{-1}^1 1/x^2\,dx directly.

Right: There's a singularity at x=0x = 0 inside the interval. Split into 10+01\int_{-1}^0 + \int_0^1.

9. Additional Worked Examples

Example 6.13: Trigonometric Integral

Problem: Evaluate 0+excosxdx\int_0^{+\infty} e^{-x}\cos x\,dx

Solution:

Use integration by parts twice, or recognize this as the real part of:

0+exeixdx=0+e(1+i)xdx\int_0^{+\infty} e^{-x} e^{ix}\,dx = \int_0^{+\infty} e^{(-1+i)x}\,dx
=[e(1+i)x1+i]0+=011+i=11i=1+i2= \left[\frac{e^{(-1+i)x}}{-1+i}\right]_0^{+\infty} = 0 - \frac{1}{-1+i} = \frac{1}{1-i} = \frac{1+i}{2}

Taking the real part: 0+excosxdx=12\int_0^{+\infty} e^{-x}\cos x\,dx = \frac{1}{2}

Example 6.14: Power Times Exponential

Problem: Evaluate 0+x2exdx\int_0^{+\infty} x^2 e^{-x}\,dx

Solution:

This is related to the Gamma function. Using integration by parts twice:

0+x2exdx=[x2ex]0++20+xexdx\int_0^{+\infty} x^2 e^{-x}\,dx = [-x^2 e^{-x}]_0^{+\infty} + 2\int_0^{+\infty} x e^{-x}\,dx

The boundary term vanishes. For the remaining integral:

20+xexdx=2([xex]0++0+exdx)=2(0+1)=22\int_0^{+\infty} x e^{-x}\,dx = 2\left([-x e^{-x}]_0^{+\infty} + \int_0^{+\infty} e^{-x}\,dx\right) = 2(0 + 1) = 2

So 0+x2exdx=2=2!\int_0^{+\infty} x^2 e^{-x}\,dx = 2 = 2!

Example 6.15: Rational with Multiple Singularities

Problem: Analyze 021x2xdx\int_0^2 \frac{1}{\sqrt{x}\sqrt{2-x}}\,dx

Solution:

Singularities at both x=0x = 0 and x=2x = 2.

Near x=0x = 0: 1x212x\frac{1}{\sqrt{x}\sqrt{2}} \sim \frac{1}{\sqrt{2x}} → p = 1/2 < 1 ✓

Near x=2x = 2: 122x\frac{1}{\sqrt{2}\sqrt{2-x}} → p = 1/2 < 1 ✓

Both singularities are integrable. Using substitution x=2sin2θx = 2\sin^2\theta: the integral equals π\pi.

Example 6.16: Polynomial Decay

Problem: Evaluate 1+1x2+3x+2dx\int_1^{+\infty} \frac{1}{x^2 + 3x + 2}\,dx

Solution:

Factor: x2+3x+2=(x+1)(x+2)x^2 + 3x + 2 = (x+1)(x+2)

Partial fractions: 1(x+1)(x+2)=1x+11x+2\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}

1+(1x+11x+2)dx=limb+[ln(x+1)ln(x+2)]1b\int_1^{+\infty} \left(\frac{1}{x+1} - \frac{1}{x+2}\right)dx = \lim_{b \to +\infty} [\ln(x+1) - \ln(x+2)]_1^b
=limb+lnb+1b+2ln23=ln1ln23=ln32= \lim_{b \to +\infty} \ln\frac{b+1}{b+2} - \ln\frac{2}{3} = \ln 1 - \ln\frac{2}{3} = \ln\frac{3}{2}
Example 6.17: Infinite Interval Both Directions

Problem: Evaluate +1ex+exdx\int_{-\infty}^{+\infty} \frac{1}{e^x + e^{-x}}\,dx

Solution:

Note 1ex+ex=exe2x+1\frac{1}{e^x + e^{-x}} = \frac{e^x}{e^{2x} + 1}

Substitute u=exu = e^x, du=exdxdu = e^x dx:

+exe2x+1dx=0+1u2+1du=[arctanu]0+=π2\int_{-\infty}^{+\infty} \frac{e^x}{e^{2x} + 1}\,dx = \int_0^{+\infty} \frac{1}{u^2 + 1}\,du = [\arctan u]_0^{+\infty} = \frac{\pi}{2}

10. Study Tips

1. Always Check for Singularities

Before evaluating any integral, scan the integrand for points where it might blow up. Check denominators, square roots, and logarithms.

2. Memorize p-Test Conditions

11/xp\int_1^\infty 1/x^p: needs p > 1. 011/xp\int_0^1 1/x^p: needs p < 1. Opposite!

3. Practice Limit Evaluation

Many improper integrals require L'Hôpital's rule or known limits like limx0+xlnx=0\lim_{x \to 0^+} x\ln x = 0.

4. Split Strategically

For mixed integrals, choose splitting points that separate singularities and infinite limits. Often x = 1 works well.

5. Use Substitutions Wisely

Substitutions can convert Type I to Type II or vice versa. For example, u=1/xu = 1/x swaps 0 and ∞.

6. Connect to Series

Many convergence tests for improper integrals parallel those for series. This helps with intuition.

11. Quick Reference Table

IntegralTypeConverges?Value
1+1x2dx\int_1^{+\infty} \frac{1}{x^2}dxType IYes (p=2>1)1
1+1xdx\int_1^{+\infty} \frac{1}{x}dxType INo (p=1)
011xdx\int_0^1 \frac{1}{\sqrt{x}}dxType IIYes (p=½<1)2
011xdx\int_0^1 \frac{1}{x}dxType IINo (p=1)
0+exdx\int_0^{+\infty} e^{-x}dxType IYes1
+11+x2dx\int_{-\infty}^{+\infty} \frac{1}{1+x^2}dxType I (both)Yesπ
01lnxdx\int_0^1 \ln x\,dxType IIYes−1
0+1x2dx\int_0^{+\infty} \frac{1}{x^2}dxMixedNo

12. Challenge Problems

Challenge 1

Determine convergence and evaluate if convergent:

0+x(1+x2)2dx\int_0^{+\infty} \frac{x}{(1+x^2)^2}\,dx
Show Solution

Solution: Substitute u=1+x2u = 1 + x^2, so du=2xdxdu = 2x\,dx.

0+x(1+x2)2dx=121+1u2du\int_0^{+\infty} \frac{x}{(1+x^2)^2}\,dx = \frac{1}{2}\int_1^{+\infty} \frac{1}{u^2}\,du
=12[1u]1+=12(0(1))=12= \frac{1}{2}\left[-\frac{1}{u}\right]_1^{+\infty} = \frac{1}{2}(0 - (-1)) = \boxed{\frac{1}{2}}

The integral converges with value 12\frac{1}{2}.

Challenge 2

For what values of α does the following converge?

01xα1lnxdx\int_0^1 \frac{x^\alpha - 1}{\ln x}\,dx
Show Solution

Solution: Check singularities at x = 0 and x = 1.

Near x = 1: By L'Hôpital, limx1xα1lnx=limx1αxα11/x=α\lim_{x \to 1} \frac{x^\alpha - 1}{\ln x} = \lim_{x \to 1} \frac{\alpha x^{\alpha-1}}{1/x} = \alpha

So the integrand is bounded near x = 1 (no singularity).

Near x = 0: xα1lnx1lnx\frac{x^\alpha - 1}{\ln x} \approx \frac{-1}{\ln x} for α>0\alpha > 0, which is bounded.

For α0\alpha \leq 0: xα+x^\alpha \to +\infty as x0+x \to 0^+, need more careful analysis.

Answer: The integral converges for all α>1\boxed{\alpha > -1}.

Challenge 3

Evaluate the following integral:

0+lnx1+x2dx\int_0^{+\infty} \frac{\ln x}{1+x^2}\,dx
Show Solution

Solution: Split at x = 1:

I=01lnx1+x2dx+1+lnx1+x2dxI = \int_0^1 \frac{\ln x}{1+x^2}\,dx + \int_1^{+\infty} \frac{\ln x}{1+x^2}\,dx

For the second integral, substitute u=1/xu = 1/x, so dx=du/u2dx = -du/u^2:

1+lnx1+x2dx=10lnu1+1/u2duu2=01lnu1+u2du\int_1^{+\infty} \frac{\ln x}{1+x^2}\,dx = \int_1^0 \frac{-\ln u}{1+1/u^2} \cdot \frac{-du}{u^2} = \int_0^1 \frac{-\ln u}{1+u^2}\,du

Therefore:

I=01lnx1+x2dx01lnx1+x2dx=0I = \int_0^1 \frac{\ln x}{1+x^2}\,dx - \int_0^1 \frac{\ln x}{1+x^2}\,dx = \boxed{0}

Challenge 4

Prove that the following integral converges:

011x(1x)(2x)3dx\int_0^1 \frac{1}{\sqrt[3]{x(1-x)(2-x)}}\,dx
Show Solution

Solution: Identify singularities in [0, 1]: x = 0 and x = 1.

Near x = 0: 1x(1x)(2x)312x3=123x1/3\frac{1}{\sqrt[3]{x(1-x)(2-x)}} \approx \frac{1}{\sqrt[3]{2x}} = \frac{1}{\sqrt[3]{2}} \cdot x^{-1/3}

This is a p-integral with p = 1/3 < 1, so it converges.

Near x = 1: 1x(1x)(2x)311x3=(1x)1/3\frac{1}{\sqrt[3]{x(1-x)(2-x)}} \approx \frac{1}{\sqrt[3]{1-x}} = (1-x)^{-1/3}

This is also p = 1/3 < 1, so it converges.

Since both singularities are integrable, the integral converges. ∎

13. Historical Context

Euler (1707-1783)

Leonhard Euler was the first to systematically study integrals with infinite limits, computing famous results like 0+ex2dx=π2\int_0^{+\infty} e^{-x^2}dx = \frac{\sqrt{\pi}}{2} using ingenious techniques.

Cauchy (1789-1857)

Augustin-Louis Cauchy provided rigorous definitions using limits, establishing the foundation for modern analysis. He introduced the concept of principal value for certain divergent integrals.

Riemann (1826-1866)

Bernhard Riemann extended integration theory to handle more general functions and contributed to our understanding of convergence for improper integrals.

14. Connections to Other Topics

Infinite Series

Improper integrals and infinite series are deeply connected. The integral test states:

n=1f(n) and 1+f(x)dx\sum_{n=1}^{\infty} f(n) \text{ and } \int_1^{+\infty} f(x)\,dx

converge or diverge together (for positive, decreasing f).

Laplace Transform

The Laplace transform is an improper integral:

L{f(t)}=0+f(t)estdt\mathcal{L}\{f(t)\} = \int_0^{+\infty} f(t)e^{-st}\,dt

Used extensively in differential equations and engineering.

Probability Theory

Continuous probability distributions require improper integrals:

+f(x)dx=1\int_{-\infty}^{+\infty} f(x)\,dx = 1

The normal distribution uses the Gaussian integral.

Fourier Transform

The Fourier transform is another improper integral:

f^(ω)=+f(t)eiωtdt\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}\,dt

Fundamental in signal processing and physics.

15. More Practice Examples

Example 6.18: Exponential with Power

Problem: Evaluate 0+x3e2xdx\int_0^{+\infty} x^3 e^{-2x}\,dx

Solution:

Use repeated integration by parts or substitute u=2xu = 2x:

0+x3e2xdx=1160+u3eudu=Γ(4)16=3!16=616=38\int_0^{+\infty} x^3 e^{-2x}\,dx = \frac{1}{16}\int_0^{+\infty} u^3 e^{-u}\,du = \frac{\Gamma(4)}{16} = \frac{3!}{16} = \frac{6}{16} = \frac{3}{8}
Example 6.19: Trigonometric Substitution

Problem: Evaluate 0111x2dx\int_0^1 \frac{1}{\sqrt{1-x^2}}\,dx

Solution:

This is Type II with singularity at x=1x = 1.

0111x2dx=[arcsinx]01=π20=π2\int_0^1 \frac{1}{\sqrt{1-x^2}}\,dx = [\arcsin x]_0^1 = \frac{\pi}{2} - 0 = \frac{\pi}{2}
Example 6.20: Rational Function at Infinity

Problem: Evaluate 0+x2(1+x2)2dx\int_0^{+\infty} \frac{x^2}{(1+x^2)^2}\,dx

Solution:

Substitute x=tanθx = \tan\theta:

0+x2(1+x2)2dx=0π/2tan2θsec4θsec2θdθ\int_0^{+\infty} \frac{x^2}{(1+x^2)^2}\,dx = \int_0^{\pi/2} \frac{\tan^2\theta}{\sec^4\theta} \cdot \sec^2\theta\,d\theta
=0π/2sin2θdθ=π4= \int_0^{\pi/2} \sin^2\theta\,d\theta = \frac{\pi}{4}
Example 6.21: Logarithm and Power

Problem: Evaluate 01x2lnxdx\int_0^1 x^2 \ln x\,dx

Solution:

Type II at x = 0 (ln x → -∞). Integration by parts:

01x2lnxdx=[x33lnx]0101x23dx\int_0^1 x^2 \ln x\,dx = \left[\frac{x^3}{3}\ln x\right]_0^1 - \int_0^1 \frac{x^2}{3}\,dx

The boundary term at 0: limx0+x3lnx3=0\lim_{x \to 0^+} \frac{x^3 \ln x}{3} = 0

=0019=19= 0 - 0 - \frac{1}{9} = -\frac{1}{9}
Example 6.22: Gaussian Type

Problem: Evaluate 0+ex2/2dx\int_0^{+\infty} e^{-x^2/2}\,dx

Solution:

Substitute u=x/2u = x/\sqrt{2}, so dx=2dudx = \sqrt{2}\,du:

0+ex2/2dx=20+eu2du=2π2=π2\int_0^{+\infty} e^{-x^2/2}\,dx = \sqrt{2}\int_0^{+\infty} e^{-u^2}\,du = \sqrt{2} \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\frac{\pi}{2}}

16. Decision Flowchart

Step 1: Check for infinite limits → Type I
Step 2: Check for singularities in [a, b] → Type II
Step 3: If both, split into separate parts (mixed)
Step 4: Find antiderivative F(x)
Step 5: Evaluate limits: limbF(b)\lim_{b \to \infty} F(b) or limϵ0+F(a+ϵ)\lim_{\epsilon \to 0^+} F(a+\epsilon)
Step 6: If limit exists and finite → converges; otherwise → diverges

17. Summary Tables

Common Improper Integrals

IntegralConditionValue
0+eaxdx\int_0^{+\infty} e^{-ax}\,dxa > 01/a
0+xneaxdx\int_0^{+\infty} x^n e^{-ax}\,dxa > 0, n ≥ 0n!/an+1n!/a^{n+1}
+ex2dx\int_{-\infty}^{+\infty} e^{-x^2}\,dx√π
0+11+x2dx\int_0^{+\infty} \frac{1}{1+x^2}\,dxπ/2
01xα1(1x)β1dx\int_0^1 x^{\alpha-1}(1-x)^{\beta-1}\,dxα, β > 0B(α,β)
0+xα1exdx\int_0^{+\infty} x^{\alpha-1}e^{-x}\,dxα > 0Γ(α)

p-Integral Summary

IntegralConverges whenDiverges when
1+1xpdx\int_1^{+\infty} \frac{1}{x^p}\,dxp > 1p ≤ 1
011xpdx\int_0^1 \frac{1}{x^p}\,dxp < 1p ≥ 1
e+1x(lnx)pdx\int_e^{+\infty} \frac{1}{x(\ln x)^p}\,dxp > 1p ≤ 1
1e1xlnxpdx\int_1^e \frac{1}{x|\ln x|^p}\,dxp < 1p ≥ 1

18. Final Remarks

Improper integrals extend the power of integration to handle infinite intervals and unbounded functions. The key insights from this section are:

  • Improper integrals are defined as limits of proper integrals
  • Type I handles infinite limits; Type II handles singularities
  • The p-test provides quick convergence criteria with opposite conditions
  • Mixed integrals require splitting at convenient points
  • Newton-Leibniz formula extends naturally with appropriate limits

In the next section, we'll develop powerful convergence tests (comparison, limit comparison) that help analyze integrals without computing them explicitly.

19. Verification Checklist

Before concluding that an improper integral converges or diverges, verify the following:

Identified all infinite limits (Type I)
Identified all singular points (Type II)
Split mixed integrals correctly
Used correct p-test conditions for each type
Evaluated limits properly (not symmetric cancellation)
Checked interior singularities within [a, b]
Verified antiderivative is correct
Confirmed all sub-integrals converge independently
Definition & Properties Quiz
5
Questions
0
Correct
0%
Accuracy
1
The integral 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx is:
Easy
Not attempted
2
The integral 011xdx\int_0^1 \frac{1}{\sqrt{x}}\,dx is:
Easy
Not attempted
3
The integral 1+1xdx\int_1^{+\infty} \frac{1}{x}\,dx is:
Easy
Not attempted
4
For 0+1x2dx\int_0^{+\infty} \frac{1}{x^2}\,dx, the correct approach is:
Medium
Not attempted
5
If a+f(x)dx\int_a^{+\infty} f(x)\,dx and a+g(x)dx\int_a^{+\infty} g(x)\,dx both converge, then:
Medium
Not attempted

Frequently Asked Questions

What makes an integral 'improper'?

An integral is improper if either (1) the integration interval is infinite (Type I), or (2) the integrand becomes unbounded at some point in the interval (Type II). Both types require limits to define.

How do I know if an integral is Type I or Type II?

Type I: Look for ±∞ in the limits. Type II: Check if the function has any singularities (points where it goes to ±∞) within [a,b]. An integral can be both types (mixed).

Can I use the Newton-Leibniz formula for improper integrals?

Yes, but with limits! For Type I: ∫_a^{+∞} f(x)dx = lim_{b→+∞} F(b) - F(a). For Type II with singularity at a: ∫_a^b f(x)dx = F(b) - lim_{ε→0^+} F(a+ε).

What if both limits are infinite?

Split the integral at any convenient point c: ∫_{-∞}^{+∞} f(x)dx = ∫_{-∞}^c f(x)dx + ∫_c^{+∞} f(x)dx. Both parts must converge independently.

Key Takeaways

Type I (Infinite Limits)

a+f=limb+abf\int_a^{+\infty} f = \lim_{b \to +\infty} \int_a^b f

Type II (Singular)

abf=limϵ0+a+ϵbf\int_a^b f = \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f

p-Test (Type I)

1+1/xp\int_1^{+\infty} 1/x^p: converges ⟺ p > 1

p-Test (Type II)

011/xp\int_0^1 1/x^p: converges ⟺ p < 1

Remember

  • Split mixed integrals at convenient points
  • Each part must converge independently
  • p-conditions are OPPOSITE for Type I vs Type II