MathIsimple
π
θ
Δ
ε
Calculus/Improper Integrals/Gamma Function & Applications
CALC-7.4
4-5 hours

Gamma Function and Applications

Explore the Gamma function Γ(α), the most important special function in analysis, its extension of the factorial, the Gaussian integral, and applications to probability and physics.

Learning Objectives
Define the Gamma function and prove its convergence
Derive the recurrence relation Γ(α+1) = αΓ(α)
Calculate Γ(1/2) = √π using the Gaussian integral
Understand the Beta function and its relation to Gamma
Apply Gamma function to probability distributions
Evaluate integrals using Gamma function techniques

1. Introduction: Extending the Factorial

The factorial function n!=123nn! = 1 \cdot 2 \cdot 3 \cdots n is only defined for non-negative integers. But what if we want to compute (1/2)!(1/2)! or π!\pi!?

The Gamma function Γ(α)\Gamma(\alpha) provides this extension, defined for all positive real numbers (and beyond, via analytic continuation).

The Key Relationship

Γ(n+1)=n!\Gamma(n+1) = n!

For positive integers n

Famous Value

Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}

Related to Gaussian integral

Remark 6.20: Why is Gamma Important?

The Gamma function appears throughout mathematics and science:

  • Probability: Gamma, Beta, and Chi-squared distributions
  • Physics: Quantum mechanics, statistical mechanics
  • Combinatorics: Binomial coefficients for non-integer arguments
  • Complex analysis: Analytic continuation to ℂ \\ ℤ₋

2. Definition of the Gamma Function

Definition 6.11: The Gamma Function

For α>0\alpha > 0, the Gamma function is defined by the improper integral:

Γ(α)=0+tα1etdt\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t}\,dt

This integral combines a Type II singularity at t=0t = 0 (when α<1\alpha < 1) with a Type I infinite limit at ++\infty.

Theorem 6.21: Convergence of Gamma Integral

The integral 0+tα1etdt\int_0^{+\infty} t^{\alpha-1} e^{-t}\,dt converges for all α>0\alpha > 0.

Proof:

Split at t = 1: Γ(α)=01tα1etdt+1+tα1etdt\Gamma(\alpha) = \int_0^1 t^{\alpha-1} e^{-t}\,dt + \int_1^{+\infty} t^{\alpha-1} e^{-t}\,dt

Near t = 0:

tα1ettα1(since et1)t^{\alpha-1} e^{-t} \leq t^{\alpha-1} \quad \text{(since } e^{-t} \leq 1 \text{)}

Since 01tα1dt=1α\int_0^1 t^{\alpha-1}\,dt = \frac{1}{\alpha} converges for α>0\alpha > 0 (p = 1-α < 1), the first part converges.

Near t = ∞:

For any α\alpha, exponential decay dominates polynomial growth:

tα1etCet/2for large tt^{\alpha-1} e^{-t} \leq C \cdot e^{-t/2} \quad \text{for large } t

Since 1+et/2dt=2e1/2\int_1^{+\infty} e^{-t/2}\,dt = 2e^{-1/2} converges, the second part converges.

Example 6.33: Computing Γ(1)

Problem: Evaluate Γ(1)\Gamma(1)

Solution:

Γ(1)=0+t0etdt=0+etdt=[et]0+=1\Gamma(1) = \int_0^{+\infty} t^0 e^{-t}\,dt = \int_0^{+\infty} e^{-t}\,dt = [-e^{-t}]_0^{+\infty} = 1
Example 6.34: Computing Γ(2)

Problem: Evaluate Γ(2)\Gamma(2)

Solution:

Γ(2)=0+tetdt\Gamma(2) = \int_0^{+\infty} t \cdot e^{-t}\,dt

Integration by parts: u=t,dv=etdtu = t, dv = e^{-t}dt

=[tet]0++0+etdt=0+1=1= [-te^{-t}]_0^{+\infty} + \int_0^{+\infty} e^{-t}\,dt = 0 + 1 = 1

So Γ(2)=1=1!\Gamma(2) = 1 = 1!

Remark 6.21: The Integral Representation

The choice of variable t is conventional. Alternative forms include:

  • Γ(α)=0+xα1exdx\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x}\,dx
  • Γ(α)=20+u2α1eu2du\Gamma(\alpha) = 2\int_0^{+\infty} u^{2\alpha-1} e^{-u^2}\,du (using t=u2t = u^2)

3. The Fundamental Recurrence Relation

Theorem 6.22: Gamma Recurrence Relation

For all α>0\alpha > 0:

Γ(α+1)=αΓ(α)\Gamma(\alpha + 1) = \alpha \cdot \Gamma(\alpha)
Proof:

Use integration by parts on Γ(α+1)=0+tαetdt\Gamma(\alpha + 1) = \int_0^{+\infty} t^\alpha e^{-t}\,dt:

Let u=tαu = t^\alpha, dv=etdtdv = e^{-t}dt, so du=αtα1dtdu = \alpha t^{\alpha-1}dt, v=etv = -e^{-t}.

Γ(α+1)=[tαet]0++α0+tα1etdt\Gamma(\alpha+1) = [-t^\alpha e^{-t}]_0^{+\infty} + \alpha \int_0^{+\infty} t^{\alpha-1} e^{-t}\,dt

The boundary term vanishes: at t=0t = 0, tαet=0t^\alpha e^{-t} = 0; at t=+t = +\infty, exponential decay dominates.

Γ(α+1)=0+αΓ(α)=αΓ(α)\Gamma(\alpha+1) = 0 + \alpha \cdot \Gamma(\alpha) = \alpha \cdot \Gamma(\alpha)

Corollary 6.3: Gamma and Factorial

For positive integers nn:

Γ(n+1)=n!\Gamma(n+1) = n!
Proof:

By induction using Γ(α+1)=αΓ(α)\Gamma(\alpha+1) = \alpha\Gamma(\alpha) and Γ(1)=1\Gamma(1) = 1:

Γ(2)=1Γ(1)=1=1!\Gamma(2) = 1 \cdot \Gamma(1) = 1 = 1!
Γ(3)=2Γ(2)=21=2=2!\Gamma(3) = 2 \cdot \Gamma(2) = 2 \cdot 1 = 2 = 2!
Γ(4)=3Γ(3)=32=6=3!\Gamma(4) = 3 \cdot \Gamma(3) = 3 \cdot 2 = 6 = 3!

In general: Γ(n+1)=n(n1)21Γ(1)=n!\Gamma(n+1) = n \cdot (n-1) \cdots 2 \cdot 1 \cdot \Gamma(1) = n!

Remark 6.22: Extending the Factorial

The recurrence lets us define factorial for non-integers:

  • (1/2)!=Γ(3/2)=12Γ(1/2)=π2(1/2)! = \Gamma(3/2) = \frac{1}{2}\Gamma(1/2) = \frac{\sqrt{\pi}}{2}
  • (3/2)!=Γ(5/2)=3212Γ(1/2)=3π4(3/2)! = \Gamma(5/2) = \frac{3}{2} \cdot \frac{1}{2}\Gamma(1/2) = \frac{3\sqrt{\pi}}{4}
Example 6.35: Computing Γ(5)

Problem: Evaluate Γ(5)\Gamma(5)

Solution:

Using the recurrence repeatedly:

Γ(5)=4Γ(4)=43Γ(3)=432Γ(2)=4321=24=4!\Gamma(5) = 4 \cdot \Gamma(4) = 4 \cdot 3 \cdot \Gamma(3) = 4 \cdot 3 \cdot 2 \cdot \Gamma(2) = 4 \cdot 3 \cdot 2 \cdot 1 = 24 = 4!

4. Γ(1/2) and the Gaussian Integral

Theorem 6.23: Gamma at Half-Integer
Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}
Proof:

By definition:

Γ(1/2)=0+t1/2etdt\Gamma(1/2) = \int_0^{+\infty} t^{-1/2} e^{-t}\,dt

Substitute t=u2t = u^2, so dt=2ududt = 2u\,du:

=0+u1eu22udu=20+eu2du= \int_0^{+\infty} u^{-1} e^{-u^2} \cdot 2u\,du = 2\int_0^{+\infty} e^{-u^2}\,du

This equals the Gaussian integral from 0 to ∞, which is π/2\sqrt{\pi}/2:

Γ(1/2)=2π2=π\Gamma(1/2) = 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi}

Theorem 6.24: The Gaussian Integral
+ex2dx=π\int_{-\infty}^{+\infty} e^{-x^2}\,dx = \sqrt{\pi}
Proof:

Let I=+ex2dxI = \int_{-\infty}^{+\infty} e^{-x^2}\,dx. Consider I2I^2:

I2=(+ex2dx)(+ey2dy)=R2e(x2+y2)dxdyI^2 = \left(\int_{-\infty}^{+\infty} e^{-x^2}\,dx\right)\left(\int_{-\infty}^{+\infty} e^{-y^2}\,dy\right) = \int\int_{\mathbb{R}^2} e^{-(x^2+y^2)}\,dx\,dy

Convert to polar coordinates: x2+y2=r2x^2 + y^2 = r^2, dxdy=rdrdθdx\,dy = r\,dr\,d\theta:

I2=02π0+er2rdrdθ=2π0+rer2drI^2 = \int_0^{2\pi} \int_0^{+\infty} e^{-r^2} r\,dr\,d\theta = 2\pi \int_0^{+\infty} r e^{-r^2}\,dr

Let u=r2u = r^2:

=2π120+eudu=π1=π= 2\pi \cdot \frac{1}{2} \int_0^{+\infty} e^{-u}\,du = \pi \cdot 1 = \pi

Therefore I=πI = \sqrt{\pi}.

Remark 6.23: Half-Integer Values

Using the recurrence Γ(α+1)=αΓ(α)\Gamma(\alpha+1) = \alpha\Gamma(\alpha):

Γ(3/2)=12π\Gamma(3/2) = \frac{1}{2}\sqrt{\pi}
Γ(5/2)=34π\Gamma(5/2) = \frac{3}{4}\sqrt{\pi}
Γ(7/2)=158π\Gamma(7/2) = \frac{15}{8}\sqrt{\pi}
Γ(n+1/2)=(2n1)!!2nπ\Gamma(n+1/2) = \frac{(2n-1)!!}{2^n}\sqrt{\pi}

5. The Beta Function

Definition 6.12: The Beta Function

For p,q>0p, q > 0, the Beta function is defined by:

B(p,q)=01xp1(1x)q1dxB(p, q) = \int_0^1 x^{p-1}(1-x)^{q-1}\,dx
Theorem 6.25: Beta-Gamma Relationship

The Beta function is related to Gamma by:

B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}
Proof:

Start with the product Γ(p)Γ(q)\Gamma(p)\Gamma(q):

Γ(p)Γ(q)=0+up1eudu0+vq1evdv\Gamma(p)\Gamma(q) = \int_0^{+\infty} u^{p-1}e^{-u}\,du \int_0^{+\infty} v^{q-1}e^{-v}\,dv

Substitute u=tsu = t\cdot s and v=t(1s)v = t(1-s) where t>0t > 0 and 0<s<10 < s < 1:

=0+01(ts)p1(t(1s))q1ettdsdt= \int_0^{+\infty} \int_0^1 (ts)^{p-1}(t(1-s))^{q-1} e^{-t} \cdot t\,ds\,dt
=0+tp+q1etdt01sp1(1s)q1ds= \int_0^{+\infty} t^{p+q-1} e^{-t}\,dt \cdot \int_0^1 s^{p-1}(1-s)^{q-1}\,ds

This equals Γ(p+q)B(p,q)\Gamma(p+q) \cdot B(p,q). Solving: B(p,q)=Γ(p)Γ(q)/Γ(p+q)B(p,q) = \Gamma(p)\Gamma(q)/\Gamma(p+q).

Remark 6.24: Symmetry

The Beta function is symmetric: B(p,q)=B(q,p)B(p, q) = B(q, p)

This follows from the substitution x1xx \mapsto 1-x in the integral.

Example 6.36: Computing B(2,3)

Problem: Evaluate B(2,3)B(2, 3)

Solution:

B(2,3)=Γ(2)Γ(3)Γ(5)=1!2!4!=1224=112B(2, 3) = \frac{\Gamma(2)\Gamma(3)}{\Gamma(5)} = \frac{1! \cdot 2!}{4!} = \frac{1 \cdot 2}{24} = \frac{1}{12}
Example 6.37: Computing B(1/2, 1/2)

Problem: Evaluate B(1/2,1/2)B(1/2, 1/2)

Solution:

B(1/2,1/2)=Γ(1/2)Γ(1/2)Γ(1)=ππ1=πB(1/2, 1/2) = \frac{\Gamma(1/2)\Gamma(1/2)}{\Gamma(1)} = \frac{\sqrt{\pi} \cdot \sqrt{\pi}}{1} = \pi

This can also be verified directly: 011x(1x)dx=π\int_0^1 \frac{1}{\sqrt{x(1-x)}}dx = \pi

6. Integral Evaluation Using Gamma

Theorem 6.26: Exponential Integral Formula

For a>0a > 0 and n>1n > -1:

0+xneaxdx=Γ(n+1)an+1\int_0^{+\infty} x^n e^{-ax}\,dx = \frac{\Gamma(n+1)}{a^{n+1}}
Proof:

Substitute t=axt = ax, so x=t/ax = t/a and dx=dt/adx = dt/a:

0+xneaxdx=0+(ta)netdta=1an+10+tnetdt=Γ(n+1)an+1\int_0^{+\infty} x^n e^{-ax}\,dx = \int_0^{+\infty} \left(\frac{t}{a}\right)^n e^{-t} \cdot \frac{dt}{a} = \frac{1}{a^{n+1}} \int_0^{+\infty} t^n e^{-t}\,dt = \frac{\Gamma(n+1)}{a^{n+1}}

Example 6.38: Using the Formula

Problem: Evaluate 0+x3e2xdx\int_0^{+\infty} x^3 e^{-2x}\,dx

Solution:

Apply the formula with n = 3 and a = 2:

0+x3e2xdx=Γ(4)24=3!16=616=38\int_0^{+\infty} x^3 e^{-2x}\,dx = \frac{\Gamma(4)}{2^4} = \frac{3!}{16} = \frac{6}{16} = \frac{3}{8}
Example 6.39: Non-Integer Exponent

Problem: Evaluate 0+xexdx\int_0^{+\infty} \sqrt{x} \cdot e^{-x}\,dx

Solution:

Here n = 1/2 and a = 1:

0+x1/2exdx=Γ(3/2)=12Γ(1/2)=π2\int_0^{+\infty} x^{1/2} e^{-x}\,dx = \Gamma(3/2) = \frac{1}{2}\Gamma(1/2) = \frac{\sqrt{\pi}}{2}
Theorem 6.27: Trigonometric Integral

For m,n>1m, n > -1:

0π/2sinmxcosnxdx=12B(m+12,n+12)\int_0^{\pi/2} \sin^m x \cos^n x\,dx = \frac{1}{2}B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)
Example 6.40: Wallis-type Integral

Problem: Evaluate 0π/2sin4xcos2xdx\int_0^{\pi/2} \sin^4 x \cos^2 x\,dx

Solution:

Here m = 4, n = 2:

=12B(52,32)=12Γ(5/2)Γ(3/2)Γ(4)= \frac{1}{2}B\left(\frac{5}{2}, \frac{3}{2}\right) = \frac{1}{2} \cdot \frac{\Gamma(5/2)\Gamma(3/2)}{\Gamma(4)}
=12(3/4)π(1/2)π6=123π/86=π32= \frac{1}{2} \cdot \frac{(3/4)\sqrt{\pi} \cdot (1/2)\sqrt{\pi}}{6} = \frac{1}{2} \cdot \frac{3\pi/8}{6} = \frac{\pi}{32}

7. More Gamma Function Examples

Example 6.41: Power Times Exponential

Problem: Evaluate 0+x4exdx\int_0^{+\infty} x^4 e^{-x}\,dx

Solution:

This is Γ(5)\Gamma(5) by definition:

0+x4exdx=Γ(5)=4!=24\int_0^{+\infty} x^4 e^{-x}\,dx = \Gamma(5) = 4! = 24
Example 6.42: Scaled Exponential

Problem: Evaluate 0+x2e3xdx\int_0^{+\infty} x^2 e^{-3x}\,dx

Solution:

Use the formula 0xneaxdx=Γ(n+1)/an+1\int_0^\infty x^n e^{-ax}dx = \Gamma(n+1)/a^{n+1}:

0+x2e3xdx=Γ(3)33=2!27=227\int_0^{+\infty} x^2 e^{-3x}\,dx = \frac{\Gamma(3)}{3^3} = \frac{2!}{27} = \frac{2}{27}
Example 6.43: Beta Function Application

Problem: Evaluate 01x2(1x)3dx\int_0^1 x^2(1-x)^3\,dx

Solution:

This is B(3,4)B(3, 4):

01x2(1x)3dx=B(3,4)=Γ(3)Γ(4)Γ(7)=2!3!6!=26720=160\int_0^1 x^2(1-x)^3\,dx = B(3, 4) = \frac{\Gamma(3)\Gamma(4)}{\Gamma(7)} = \frac{2! \cdot 3!}{6!} = \frac{2 \cdot 6}{720} = \frac{1}{60}
Example 6.44: Gaussian with Power

Problem: Evaluate 0+x2ex2dx\int_0^{+\infty} x^2 e^{-x^2}\,dx

Solution:

Substitute u=x2u = x^2, so x=u1/2x = u^{1/2} and dx=12u1/2dudx = \frac{1}{2}u^{-1/2}du:

0+x2ex2dx=0+ueu12u1/2du=120+u1/2eudu\int_0^{+\infty} x^2 e^{-x^2}\,dx = \int_0^{+\infty} u \cdot e^{-u} \cdot \frac{1}{2}u^{-1/2}\,du = \frac{1}{2}\int_0^{+\infty} u^{1/2} e^{-u}\,du
=12Γ(3/2)=12π2=π4= \frac{1}{2}\Gamma(3/2) = \frac{1}{2} \cdot \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{4}
Example 6.45: Trig Power Integral

Problem: Evaluate 0π/2sin3xcos2xdx\int_0^{\pi/2} \sin^3 x \cos^2 x\,dx

Solution:

Use the formula with m = 3, n = 2:

=12B(2,32)=12Γ(2)Γ(3/2)Γ(7/2)= \frac{1}{2}B\left(2, \frac{3}{2}\right) = \frac{1}{2} \cdot \frac{\Gamma(2)\Gamma(3/2)}{\Gamma(7/2)}
=121π215π8=12415=215= \frac{1}{2} \cdot \frac{1 \cdot \frac{\sqrt{\pi}}{2}}{\frac{15\sqrt{\pi}}{8}} = \frac{1}{2} \cdot \frac{4}{15} = \frac{2}{15}
Example 6.46: General Exponential

Problem: Evaluate 0+ex3dx\int_0^{+\infty} e^{-x^3}\,dx

Solution:

Substitute u=x3u = x^3, so x=u1/3x = u^{1/3} and dx=13u2/3dudx = \frac{1}{3}u^{-2/3}du:

0+ex3dx=130+u2/3eudu=13Γ(1/3)\int_0^{+\infty} e^{-x^3}\,dx = \frac{1}{3}\int_0^{+\infty} u^{-2/3} e^{-u}\,du = \frac{1}{3}\Gamma(1/3)

8. The Duplication Formula

Theorem 6.28: Legendre Duplication Formula

For all z>0z > 0:

Γ(z)Γ(z+12)=π22z1Γ(2z)\Gamma(z)\Gamma\left(z + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2z-1}} \Gamma(2z)
Remark 6.25: Alternative Form

This can also be written as:

Γ(2z)=22z1πΓ(z)Γ(z+12)\Gamma(2z) = \frac{2^{2z-1}}{\sqrt{\pi}} \Gamma(z)\Gamma\left(z + \frac{1}{2}\right)
Example 6.47: Verifying with z = 1

Problem: Verify the duplication formula for z=1z = 1

Solution:

Left side: Γ(1)Γ(3/2)=1π2=π2\Gamma(1)\Gamma(3/2) = 1 \cdot \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2}

Right side: π21Γ(2)=π21=π2\frac{\sqrt{\pi}}{2^1}\Gamma(2) = \frac{\sqrt{\pi}}{2} \cdot 1 = \frac{\sqrt{\pi}}{2}

Both sides match. ✓

Example 6.48: Using Duplication to Find Γ(3/2)

Problem: Use the duplication formula with z = 1/2 to find Γ(3/2)\Gamma(3/2)

Solution:

With z = 1/2:

Γ(1/2)Γ(1)=π20Γ(1)\Gamma(1/2)\Gamma(1) = \frac{\sqrt{\pi}}{2^0}\Gamma(1)

Since Γ(1)=1\Gamma(1) = 1 and Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}:

The formula checks out. Now use z = 1: Γ(1)Γ(3/2)=π2Γ(2)\Gamma(1)\Gamma(3/2) = \frac{\sqrt{\pi}}{2}\Gamma(2)

So Γ(3/2)=π2\Gamma(3/2) = \frac{\sqrt{\pi}}{2}

Remark 6.26: Applications of Duplication

The duplication formula is useful for:

  • Computing Gamma at half-integers
  • Simplifying products of Gamma functions
  • Proving identities involving factorials and double factorials
  • Evaluating certain definite integrals

9. Advanced Gamma Function Examples

Example 6.49: Laplace Transform Connection

Problem: Find the Laplace transform of tnt^n

Solution:

The Laplace transform is:

L{tn}=0+tnestdt=Γ(n+1)sn+1=n!sn+1\mathcal{L}\{t^n\} = \int_0^{+\infty} t^n e^{-st}\,dt = \frac{\Gamma(n+1)}{s^{n+1}} = \frac{n!}{s^{n+1}}

This fundamental result connects Gamma to transform methods.

Example 6.50: Gaussian Moments

Problem: Evaluate 0+x4ex2dx\int_0^{+\infty} x^4 e^{-x^2}\,dx

Solution:

Substitute u=x2u = x^2:

0+x4ex2dx=120+u3/2eudu=12Γ(5/2)\int_0^{+\infty} x^4 e^{-x^2}\,dx = \frac{1}{2}\int_0^{+\infty} u^{3/2} e^{-u}\,du = \frac{1}{2}\Gamma(5/2)

Using Γ(5/2)=3212π=3π4\Gamma(5/2) = \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} = \frac{3\sqrt{\pi}}{4}:

=123π4=3π8= \frac{1}{2} \cdot \frac{3\sqrt{\pi}}{4} = \frac{3\sqrt{\pi}}{8}
Example 6.51: Beta with Equal Arguments

Problem: Evaluate 01[x(1x)]n1dx\int_0^1 [x(1-x)]^{n-1}\,dx for n>0n > 0

Solution:

This is B(n,n)B(n, n):

01xn1(1x)n1dx=B(n,n)=Γ(n)2Γ(2n)\int_0^1 x^{n-1}(1-x)^{n-1}\,dx = B(n, n) = \frac{\Gamma(n)^2}{\Gamma(2n)}

For example, with n = 2:

B(2,2)=(1!)23!=16B(2, 2) = \frac{(1!)^2}{3!} = \frac{1}{6}
Example 6.52: Stirling Approximation

Problem: Estimate Γ(10.5)\Gamma(10.5)

Solution:

Using the recurrence from Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}:

Γ(10.5)=Γ(9.5+1)=9.5Γ(9.5)\Gamma(10.5) = \Gamma(9.5 + 1) = 9.5 \cdot \Gamma(9.5)

Continuing: =9.58.57.50.5π= 9.5 \cdot 8.5 \cdot 7.5 \cdots 0.5 \cdot \sqrt{\pi}

This equals (19)!!210π1133278.4\frac{(19)!!}{2^{10}} \sqrt{\pi} \approx 1133278.4

Example 6.53: Volume of n-Sphere

Problem: Show that the volume of an n-sphere with radius R involves Gamma

Solution:

The volume formula is:

Vn(R)=πn/2Γ(n/2+1)RnV_n(R) = \frac{\pi^{n/2}}{\Gamma(n/2 + 1)} R^n

For n = 2: V2=πΓ(2)R2=πR2V_2 = \frac{\pi}{\Gamma(2)} R^2 = \pi R^2 (area of circle)

For n = 3: V3=π3/2Γ(5/2)R3=π3/2(3/4)πR3=4π3R3V_3 = \frac{\pi^{3/2}}{\Gamma(5/2)} R^3 = \frac{\pi^{3/2}}{(3/4)\sqrt{\pi}} R^3 = \frac{4\pi}{3} R^3

Example 6.54: Generalized Gaussian

Problem: Evaluate 0+eaxpdx\int_0^{+\infty} e^{-ax^p}\,dx for a, p > 0

Solution:

Substitute u=axpu = ax^p, so x=(u/a)1/px = (u/a)^{1/p} and dx=1pa(u/a)1/p1dudx = \frac{1}{pa}(u/a)^{1/p-1}du:

=1pa1/p0+u1/p1eudu=1pa1/pΓ(1/p)= \frac{1}{pa^{1/p}} \int_0^{+\infty} u^{1/p - 1} e^{-u}\,du = \frac{1}{pa^{1/p}} \Gamma(1/p)

10. Study Tips for Gamma Function

1. Remember the Shift

Γ(n+1)=n!\Gamma(n+1) = n!, not Γ(n)=n!\Gamma(n) = n!. The exponent in the integral is tα1t^{\alpha-1}, causing the off-by-one.

2. Know Key Values

Memorize: Γ(1)=1\Gamma(1) = 1, Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}, and use recurrence for others.

3. Master Substitutions

For xneaxdx\int x^n e^{-ax}dx, use t=axt = ax. For expdx\int e^{-x^p}dx, use u=xpu = x^p.

4. Beta Simplifies [0,1] Integrals

01xp1(1x)q1dx=B(p,q)=Γ(p)Γ(q)Γ(p+q)\int_0^1 x^{p-1}(1-x)^{q-1}dx = B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}

5. Recurrence is Your Friend

Γ(α+1)=αΓ(α)\Gamma(\alpha+1) = \alpha \Gamma(\alpha) lets you reduce to known values.

6. Half-Integer Pattern

Γ(n+1/2)=(2n1)!!2nπ\Gamma(n + 1/2) = \frac{(2n-1)!!}{2^n}\sqrt{\pi} where (2n1)!!=135(2n1)(2n-1)!! = 1 \cdot 3 \cdot 5 \cdots (2n-1).

7. Check Scaling Factors

When the exponent of e is not just -t, account for the scaling: xneaxdx=Γ(n+1)/an+1\int x^n e^{-ax}dx = \Gamma(n+1)/a^{n+1}.

8. Verify with Special Cases

Always check your answer with known values. For n = 0, 1, 2 you can verify directly.

11. Common Mistakes with Gamma Function

Mistake 1: Off-by-One Error

Wrong: Thinking Γ(n)=n!\Gamma(n) = n!

Right: Γ(n+1)=n!\Gamma(n+1) = n!, so Γ(n)=(n1)!\Gamma(n) = (n-1)!

Mistake 2: Forgetting the Exponent Shift

Wrong: 0tnetdt=Γ(n)\int_0^\infty t^n e^{-t}dt = \Gamma(n)

Right: 0tnetdt=Γ(n+1)\int_0^\infty t^n e^{-t}dt = \Gamma(n+1) since the definition uses tα1t^{\alpha-1}

Mistake 3: Wrong Beta-Gamma Formula

Wrong: B(p,q)=Γ(p)Γ(q)B(p,q) = \Gamma(p)\Gamma(q)

Right: B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}

Mistake 4: Forgetting to Apply Substitution

Wrong: 0xneaxdx=Γ(n+1)\int_0^\infty x^n e^{-ax}dx = \Gamma(n+1)

Right: 0xneaxdx=Γ(n+1)an+1\int_0^\infty x^n e^{-ax}dx = \frac{\Gamma(n+1)}{a^{n+1}}

Mistake 5: Misremembering Γ(1/2)

Wrong: Γ(1/2)=π\Gamma(1/2) = \pi or Γ(1/2)=1/2\Gamma(1/2) = 1/2

Right: Γ(1/2)=π1.77\Gamma(1/2) = \sqrt{\pi} \approx 1.77

Mistake 6: Gamma at Non-Positive Integers

Wrong: Computing Γ(0)=0!=1\Gamma(0) = 0! = 1

Right: Γ(0)\Gamma(0) is undefined (has a pole). Similarly for all non-positive integers.

12. Gamma Function Value Table

αΓ(α)Notes
11Base case: Γ(1) = 0!
21Γ(2) = 1! = 1
32Γ(3) = 2! = 2
46Γ(4) = 3! = 6
524Γ(5) = 4! = 24
1/2π\sqrt{\pi}≈ 1.7725
3/212π\frac{1}{2}\sqrt{\pi}≈ 0.8862
5/234π\frac{3}{4}\sqrt{\pi}≈ 1.3293
7/2158π\frac{15}{8}\sqrt{\pi}≈ 3.3234

13. Challenge Problems

Challenge 1

Evaluate using Gamma function:

0+x5e3xdx\int_0^{+\infty} x^5 e^{-3x}\,dx
Show hint

Use Γ(n+1)/a^{n+1} with n=5, a=3.

Challenge 2

Evaluate using Beta function:

01x3(1x)4dx\int_0^1 x^3(1-x)^4\,dx
Show hint

This is B(4,5) = Γ(4)Γ(5)/Γ(9).

Challenge 3

Prove using Gamma functions:

0+ex4dx=Γ(5/4)\int_0^{+\infty} e^{-x^4}\,dx = \Gamma(5/4)
Show hint

Substitute u = x⁴.

Challenge 4

Evaluate the integral:

0π/2sinxdx\int_0^{\pi/2} \sqrt{\sin x}\,dx
Show hint

Use the trigonometric Beta formula with m=1/2, n=0.

14. Applications in Probability

Gamma Distribution

A random variable X has a Gamma distribution with parameters α > 0 and β > 0 if:

f(x)=1βαΓ(α)xα1ex/β,x>0f(x) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, \quad x > 0

The Gamma function in the denominator normalizes the distribution.

Beta Distribution

A random variable X has a Beta distribution with parameters α, β > 0 if:

f(x)=1B(α,β)xα1(1x)β1,0<x<1f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1

The Beta function normalizes this probability density on [0,1].

Chi-Squared Distribution

The chi-squared distribution with k degrees of freedom is Gamma(k/2, 2):

f(x)=12k/2Γ(k/2)xk/21ex/2,x>0f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}, \quad x > 0

This is fundamental in statistical hypothesis testing.

15. Beta Function Value Table

pqB(p,q)Notes
111Γ(1)²/Γ(2) = 1
221/6Γ(2)²/Γ(4) = 1/6
331/30Γ(3)²/Γ(6) = 4/120
1/21/2πΓ(1/2)²/Γ(1) = π
121/2Γ(1)Γ(2)/Γ(3) = 1/2
231/12Γ(2)Γ(3)/Γ(5) = 2/24
341/60Γ(3)Γ(4)/Γ(7) = 12/720
1/23/2π/2Used in arc length integrals

16. Formula Reference Card

Gamma Formulas

Γ(α)=0tα1etdt\Gamma(\alpha) = \int_0^\infty t^{\alpha-1}e^{-t}dt

Γ(α+1)=αΓ(α)\Gamma(\alpha+1) = \alpha\Gamma(\alpha)

Γ(n+1)=n!\Gamma(n+1) = n!

Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}

Beta Formulas

B(p,q)=01xp1(1x)q1dxB(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1}dx

B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}

B(p,q)=B(q,p)B(p,q) = B(q,p)

Integral Formulas

0xneaxdx=Γ(n+1)an+1\int_0^\infty x^n e^{-ax}dx = \frac{\Gamma(n+1)}{a^{n+1}}

ex2dx=π\int_{-\infty}^\infty e^{-x^2}dx = \sqrt{\pi}

0π/2sinmxcosnxdx=12B(m+12,n+12)\int_0^{\pi/2} \sin^m x \cos^n x\,dx = \frac{1}{2}B(\frac{m+1}{2}, \frac{n+1}{2})

Duplication Formula

Γ(z)Γ(z+12)=π22z1Γ(2z)\Gamma(z)\Gamma(z+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2z-1}}\Gamma(2z)

Γ(n+12)=(2n1)!!2nπ\Gamma(n+\frac{1}{2}) = \frac{(2n-1)!!}{2^n}\sqrt{\pi}

17. Historical Note

The Gamma function was introduced by Leonhard Euler in 1729 as an extension of the factorial to non-integer arguments. He discovered the integral representation while trying to find a smooth curve passing through the points (n, n!) for positive integers n.

The notation Γ(z) was introduced by Adrien-Marie Legendre in the early 19th century. The duplication formula is also named after Legendre.

Today, the Gamma function is one of the most important special functions in mathematics, appearing in number theory, complex analysis, probability, physics, and engineering applications.

Gamma Function Quiz
12
Questions
0
Correct
0%
Accuracy
1
The Gamma function Γ(n+1)\Gamma(n+1) for positive integer nn equals:
Easy
Not attempted
2
The value of Γ(1/2)\Gamma(1/2) is:
Medium
Not attempted
3
The recurrence relation for Gamma is:
Easy
Not attempted
4
The Beta function B(p,q)B(p,q) equals:
Medium
Not attempted
5
The Gaussian integral +ex2dx\int_{-\infty}^{+\infty} e^{-x^2}dx equals:
Medium
Not attempted
6
The value of Γ(3/2)\Gamma(3/2) is:
Medium
Not attempted
7
The integral 0+x2exdx\int_0^{+\infty} x^2 e^{-x} dx equals:
Easy
Not attempted
8
0+x4e2xdx\int_0^{+\infty} x^4 e^{-2x} dx equals:
Hard
Not attempted
9
The Beta function B(1/2,1/2)B(1/2, 1/2) equals:
Medium
Not attempted
10
For the Gamma integral to converge at t=0t=0, we need:
Hard
Not attempted
11
The value of Γ(1)\Gamma(1) is:
Easy
Not attempted
12
Which identity is TRUE?
Hard
Not attempted

Frequently Asked Questions

What is the Gamma function?

Γ(α) = ∫₀^∞ t^{α-1}e^{-t}dt for α > 0. It extends the factorial to non-integers: Γ(n+1) = n! for positive integers n.

Why is Γ(1/2) = √π important?

It connects the Gamma function to the Gaussian integral ∫e^{-x²}dx = √π, which appears in probability (normal distribution), physics, and many other areas.

What is the Beta function used for?

B(p,q) = ∫₀¹ x^{p-1}(1-x)^{q-1}dx appears in probability (Beta distribution), combinatorics, and simplifies many integrals via B(p,q) = Γ(p)Γ(q)/Γ(p+q).

How do I evaluate integrals using Gamma?

Transform to the form ∫₀^∞ t^{α-1}e^{-t}dt using substitution. For example, ∫₀^∞ x^n e^{-ax}dx = Γ(n+1)/a^{n+1} = n!/a^{n+1}.

What is the relationship between Gamma and factorial?

Γ(n+1) = n! for positive integers. This means Γ(1) = 0! = 1, Γ(2) = 1! = 1, Γ(3) = 2! = 2, Γ(4) = 3! = 6, etc.

How do I compute Γ at half-integer values?

Use Γ(1/2) = √π and the recurrence. For example: Γ(3/2) = (1/2)Γ(1/2) = √π/2, Γ(5/2) = (3/2)(1/2)Γ(1/2) = 3√π/4.

Why does Gamma converge for α > 0?

Near t=0, t^{α-1} is integrable for α > 0 (p-test). Near t=∞, e^{-t} dominates any polynomial growth, ensuring convergence.

What is the duplication formula?

Γ(2z) = (2^{2z-1}/√π) Γ(z)Γ(z+1/2). This relates Gamma at 2z to its values at z and z+1/2.

Can Gamma be extended to negative arguments?

Yes, via Γ(α) = Γ(α+1)/α. This gives poles at 0, -1, -2, ... but defines Gamma for all other real (and complex) numbers.

Where does the Gamma function appear in probability?

The Gamma distribution has PDF f(x) = x^{α-1}e^{-x/β}/(β^α Γ(α)). The Chi-squared, Exponential, and Erlang distributions are special cases.

Key Takeaways

Gamma Definition

Γ(α)=0+tα1etdt\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t}\,dt

Recurrence Relation

Γ(α+1)=αΓ(α)\Gamma(\alpha+1) = \alpha \cdot \Gamma(\alpha)

Factorial Connection

Γ(n+1)=n!\Gamma(n+1) = n!

Half-Integer

Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}

Beta-Gamma Relation

B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}

Remember

  • Gamma extends factorial to non-integers
  • Use substitution to convert to Gamma form
  • Beta function simplifies integrals on [0,1]