MathIsimple
π
θ
Δ
ε
CALC-5.2
3-4 hours

Basic Integration Formulas

The essential toolkit: formulas for power, exponential, trigonometric, and inverse trigonometric functions.

Learning Objectives
  • Apply the power rule for integration
  • Integrate exponential functions with various bases
  • Integrate all six trigonometric functions
  • Integrate inverse trigonometric functions
  • Apply hyperbolic function integration formulas
  • Recognize which formula applies to a given integrand

1. Introduction

Just as we memorize differentiation formulas, we need a collection of basic integration formulas. These are the building blocks for evaluating indefinite integrals. Each formula comes from reversing a corresponding differentiation rule.

2. Power Rule for Integration

Theorem 5.6: Power Rule

For any real number n1n \neq -1:

xndx=xn+1n+1+C\int x^n\,dx = \frac{x^{n+1}}{n+1} + C

For n=1n = -1:

x1dx=1xdx=lnx+C\int x^{-1}\,dx = \int \frac{1}{x}\,dx = \ln|x| + C
Proof:

Verify by differentiation:

ddx(xn+1n+1)=(n+1)xnn+1=xn\frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right) = \frac{(n+1)x^n}{n+1} = x^n \quad \checkmark
Example 5.32: Power Rule Applications

(a) x7dx=x88+C\int x^7\,dx = \frac{x^8}{8} + C

(b) x3dx=x22+C=12x2+C\int x^{-3}\,dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C

(c) xdx=x1/2dx=x3/23/2+C=23xx+C\int \sqrt{x}\,dx = \int x^{1/2}\,dx = \frac{x^{3/2}}{3/2} + C = \frac{2}{3}x\sqrt{x} + C

(d) 1x4dx=13x3+C\int \frac{1}{x^4}\,dx = -\frac{1}{3x^3} + C

(e) 1x3dx=32x23+C\int \frac{1}{\sqrt[3]{x}}\,dx = \frac{3}{2}\sqrt[3]{x^2} + C

3. Exponential and Logarithmic Functions

Theorem 5.7: Exponential Integrals
exdx=ex+C\int e^x\,dx = e^x + C
axdx=axlna+C(a>0,a1)\int a^x\,dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1)
eaxdx=eaxa+C(a0)\int e^{ax}\,dx = \frac{e^{ax}}{a} + C \quad (a \neq 0)
1xdx=lnx+C\int \frac{1}{x}\,dx = \ln|x| + C
Example 5.33: Exponential Integrals

(a) e5xdx=e5x5+C\int e^{5x}\,dx = \frac{e^{5x}}{5} + C

(b) 2xdx=2xln2+C\int 2^x\,dx = \frac{2^x}{\ln 2} + C

(c) exdx=ex+C\int e^{-x}\,dx = -e^{-x} + C

(d) 10xdx=10xln10+C\int 10^x\,dx = \frac{10^x}{\ln 10} + C

4. Trigonometric Functions

Theorem 5.8: Basic Trigonometric Integrals
sinxdx=cosx+C\int \sin x\,dx = -\cos x + C
cosxdx=sinx+C\int \cos x\,dx = \sin x + C
sec2xdx=tanx+C\int \sec^2 x\,dx = \tan x + C
csc2xdx=cotx+C\int \csc^2 x\,dx = -\cot x + C
secxtanxdx=secx+C\int \sec x \tan x\,dx = \sec x + C
cscxcotxdx=cscx+C\int \csc x \cot x\,dx = -\csc x + C
Theorem 5.9: tan, cot, sec, csc Integrals
tanxdx=lncosx+C=lnsecx+C\int \tan x\,dx = -\ln|\cos x| + C = \ln|\sec x| + C
cotxdx=lnsinx+C\int \cot x\,dx = \ln|\sin x| + C
secxdx=lnsecx+tanx+C\int \sec x\,dx = \ln|\sec x + \tan x| + C
cscxdx=lncscx+cotx+C\int \csc x\,dx = -\ln|\csc x + \cot x| + C
Example 5.34: Trig Integrals

(a) 3sinxdx=3cosx+C\int 3\sin x\,dx = -3\cos x + C

(b) (sinx+cosx)dx=cosx+sinx+C\int (\sin x + \cos x)\,dx = -\cos x + \sin x + C

(c) tan3xdx=13lnsec3x+C\int \tan 3x\,dx = \frac{1}{3}\ln|\sec 3x| + C

5. Inverse Trigonometric Functions

Theorem 5.10: Inverse Trig Integrals
11x2dx=arcsinx+C\int \frac{1}{\sqrt{1-x^2}}\,dx = \arcsin x + C
11+x2dx=arctanx+C\int \frac{1}{1+x^2}\,dx = \arctan x + C
1xx21dx=arcsec x+C\int \frac{1}{|x|\sqrt{x^2-1}}\,dx = \text{arcsec }|x| + C
Theorem 5.11: Generalized Forms

For a>0a > 0:

1a2x2dx=arcsinxa+C\int \frac{1}{\sqrt{a^2-x^2}}\,dx = \arcsin\frac{x}{a} + C
1a2+x2dx=1aarctanxa+C\int \frac{1}{a^2+x^2}\,dx = \frac{1}{a}\arctan\frac{x}{a} + C
1x2a2dx=12alnxax+a+C\int \frac{1}{x^2-a^2}\,dx = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| + C
Example 5.35: Inverse Trig Integrals

(a) 19x2dx=arcsinx3+C\int \frac{1}{\sqrt{9-x^2}}\,dx = \arcsin\frac{x}{3} + C

(b) 14+x2dx=12arctanx2+C\int \frac{1}{4+x^2}\,dx = \frac{1}{2}\arctan\frac{x}{2} + C

(c) 1x29dx=16lnx3x+3+C\int \frac{1}{x^2-9}\,dx = \frac{1}{6}\ln\left|\frac{x-3}{x+3}\right| + C

6. Hyperbolic Functions

Definition 5.3: Hyperbolic Functions
sinhx=exex2\sinh x = \frac{e^x - e^{-x}}{2}
coshx=ex+ex2\cosh x = \frac{e^x + e^{-x}}{2}
Theorem 5.12: Hyperbolic Integrals
sinhxdx=coshx+C\int \sinh x\,dx = \cosh x + C
coshxdx=sinhx+C\int \cosh x\,dx = \sinh x + C
sech2xdx=tanhx+C\int \text{sech}^2 x\,dx = \tanh x + C
1x2+1dx=lnx+x2+1+C\int \frac{1}{\sqrt{x^2+1}}\,dx = \ln|x + \sqrt{x^2+1}| + C
1x21dx=lnx+x21+C(x>1)\int \frac{1}{\sqrt{x^2-1}}\,dx = \ln|x + \sqrt{x^2-1}| + C \quad (x > 1)

7. Complete Formula Reference

Power & Logarithmic

xndx=xn+1n+1+C\int x^n\,dx = \frac{x^{n+1}}{n+1} + C
1xdx=lnx+C\int \frac{1}{x}\,dx = \ln|x| + C

Exponential

exdx=ex+C\int e^x\,dx = e^x + C
axdx=axlna+C\int a^x\,dx = \frac{a^x}{\ln a} + C

Trigonometric

sinxdx=cosx+C\int \sin x\,dx = -\cos x + C
cosxdx=sinx+C\int \cos x\,dx = \sin x + C
tanxdx=lnsecx+C\int \tan x\,dx = \ln|\sec x| + C
cotxdx=lnsinx+C\int \cot x\,dx = \ln|\sin x| + C
sec2xdx=tanx+C\int \sec^2 x\,dx = \tan x + C
csc2xdx=cotx+C\int \csc^2 x\,dx = -\cot x + C

Inverse Trigonometric

11x2dx=arcsinx+C\int \frac{1}{\sqrt{1-x^2}}\,dx = \arcsin x + C
11+x2dx=arctanx+C\int \frac{1}{1+x^2}\,dx = \arctan x + C
Basic Formulas Quiz
8
Questions
0
Correct
0%
Accuracy
1
x5dx=\int x^5\,dx =
Easy
Not attempted
2
e3xdx=\int e^{3x}\,dx =
Easy
Not attempted
3
tanxdx=\int \tan x\,dx =
Medium
Not attempted
4
11+x2dx=\int \frac{1}{1+x^2}\,dx =
Easy
Not attempted
5
3xdx=\int 3^x\,dx =
Medium
Not attempted
6
coshxdx=\int \cosh x\,dx =
Medium
Not attempted
7
11x2dx=\int \frac{1}{\sqrt{1-x^2}}\,dx =
Medium
Not attempted
8
secxdx=\int \sec x\,dx =
Hard
Not attempted

Frequently Asked Questions

How do I know which formula to use?

Identify the form of the integrand. Look for: power functions (x^n), exponentials (e^x, a^x), trig functions, inverse trig patterns (1/√(1-x²), 1/(1+x²)), and logarithms (1/x).

Why is ∫1/x dx = ln|x| and not ln(x)?

The absolute value is needed because ln(x) is only defined for x > 0, but 1/x is defined for all x ≠ 0.

What's the difference between ∫sin x dx and ∫sin(ax) dx?

∫sin x dx = -cos x + C, but ∫sin(ax) dx = -cos(ax)/a + C. The chain rule in reverse requires dividing by a.

How do I integrate tan x and cot x?

∫tan x dx = -ln|cos x| + C = ln|sec x| + C. ∫cot x dx = ln|sin x| + C.

What are the integrals of sec x and csc x?

∫sec x dx = ln|sec x + tan x| + C. ∫csc x dx = -ln|csc x + cot x| + C.

When do I use arcsin vs arccos?

∫1/√(1-x²) dx = arcsin x + C. Usually arcsin is preferred.

What about integrals with √(a²-x²)?

∫1/√(a²-x²) dx = arcsin(x/a) + C. These generalize the basic formulas.

How do hyperbolic functions relate to exponentials?

sinh x = (e^x - e^{-x})/2 and cosh x = (e^x + e^{-x})/2.

8. Common Mistakes

Wrong sign for sin/cos

Wrong: sinxdx=cosx+C\int \sin x\,dx = \cos x + C

Right: sinxdx=cosx+C\int \sin x\,dx = -\cos x + C

Missing coefficient for e^{ax}

Wrong: e2xdx=e2x+C\int e^{2x}\,dx = e^{2x} + C

Right: e2xdx=e2x2+C\int e^{2x}\,dx = \frac{e^{2x}}{2} + C

Missing ln in a^x

Wrong: 2xdx=2x+C\int 2^x\,dx = 2^x + C

Right: 2xdx=2xln2+C\int 2^x\,dx = \frac{2^x}{\ln 2} + C

Missing 1/a in generalized formulas

Wrong: 14+x2dx=arctanx2+C\int \frac{1}{4+x^2}\,dx = \arctan\frac{x}{2} + C

Right: 14+x2dx=12arctanx2+C\int \frac{1}{4+x^2}\,dx = \frac{1}{2}\arctan\frac{x}{2} + C

9. More Worked Examples

Example 5.36: Polynomial

Problem: (3x42x3+5x7)dx\int (3x^4 - 2x^3 + 5x - 7)\,dx

=3x55x42+5x227x+C= \frac{3x^5}{5} - \frac{x^4}{2} + \frac{5x^2}{2} - 7x + C
Example 5.37: Fractional Powers

Problem: (x+x3+x4)dx\int (\sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x})\,dx

Write as: x1/2+x1/3+x1/4x^{1/2} + x^{1/3} + x^{1/4}

=2x3/23+3x4/34+4x5/45+C= \frac{2x^{3/2}}{3} + \frac{3x^{4/3}}{4} + \frac{4x^{5/4}}{5} + C
Example 5.38: Negative Powers

Problem: 1x5dx\int \frac{1}{x^5}\,dx

x5dx=x44+C=14x4+C\int x^{-5}\,dx = \frac{x^{-4}}{-4} + C = -\frac{1}{4x^4} + C
Example 5.39: Exponential Sum

Problem: (ex+2x+3x)dx\int (e^x + 2^x + 3^x)\,dx

=ex+2xln2+3xln3+C= e^x + \frac{2^x}{\ln 2} + \frac{3^x}{\ln 3} + C
Example 5.40: Trig Sum

Problem: (3sinx2cosx+sec2x)dx\int (3\sin x - 2\cos x + \sec^2 x)\,dx

=3cosx2sinx+tanx+C= -3\cos x - 2\sin x + \tan x + C
Example 5.41: Rational Simplification

Problem: x3+2x2x+1x2dx\int \frac{x^3 + 2x^2 - x + 1}{x^2}\,dx

Simplify: =x+2x1+x2= x + 2 - x^{-1} + x^{-2}

=x22+2xlnx1x+C= \frac{x^2}{2} + 2x - \ln|x| - \frac{1}{x} + C
Example 5.42: Inverse Trig Pattern

Problem: 325x2dx\int \frac{3}{\sqrt{25-x^2}}\,dx

Here a = 5:

=3arcsinx5+C= 3\arcsin\frac{x}{5} + C
Example 5.43: Arctan Form

Problem: 29+x2dx\int \frac{2}{9+x^2}\,dx

Here a = 3:

=23arctanx3+C= \frac{2}{3}\arctan\frac{x}{3} + C

10. Study Tips

1. Memorize Core Formulas

Power, exponential, basic trig, and inverse trig forms.

2. Verify by Differentiating

Always check your answer by taking the derivative.

3. Watch Linear Arguments

∫sin(ax)dx adds a factor of 1/a.

4. Recognize Patterns

1/(1+x²) → arctan, 1/√(1-x²) → arcsin

5. Simplify First

Algebra often reveals a known form.

6. Use Flash Cards

Practice until formulas are automatic.

11. Extended Practice

Example 5.44: Mixed Problem 1

Problem: (e2x+12x+cos3x)dx\int \left(e^{2x} + \frac{1}{2x} + \cos 3x\right)\,dx

=e2x2+12lnx+sin3x3+C= \frac{e^{2x}}{2} + \frac{1}{2}\ln|x| + \frac{\sin 3x}{3} + C
Example 5.45: Mixed Problem 2

Problem: x41x2dx\int \frac{x^4 - 1}{x^2}\,dx

Simplify: =x2x2= x^2 - x^{-2}

=x33+1x+C= \frac{x^3}{3} + \frac{1}{x} + C
Example 5.46: Mixed Problem 3

Problem: (secxtanx+cscxcotx)dx\int (\sec x \tan x + \csc x \cot x)\,dx

=secxcscx+C= \sec x - \csc x + C
Example 5.47: Mixed Problem 4

Problem: 52xdx\int 5^{2x}\,dx

Let u = 2x, so dx = du/2:

=1252xln5+C=52x2ln5+C= \frac{1}{2} \cdot \frac{5^{2x}}{\ln 5} + C = \frac{5^{2x}}{2\ln 5} + C
Example 5.48: Mixed Problem 5

Problem: 416x2dx\int \frac{4}{\sqrt{16-x^2}}\,dx

=4arcsinx4+C= 4\arcsin\frac{x}{4} + C
Example 5.49: Mixed Problem 6

Problem: 1x225dx\int \frac{1}{x^2 - 25}\,dx

Here a = 5:

=110lnx5x+5+C= \frac{1}{10}\ln\left|\frac{x-5}{x+5}\right| + C
Example 5.50: Hyperbolic

Problem: (2sinhx+3coshx)dx\int (2\sinh x + 3\cosh x)\,dx

=2coshx+3sinhx+C= 2\cosh x + 3\sinh x + C
Example 5.51: Complex Fraction

Problem: x2+1x2dx\int \frac{x^2 + 1}{x^2}\,dx

Simplify: =1+x2= 1 + x^{-2}

=x1x+C= x - \frac{1}{x} + C

12. Complete Formula Summary

f(x)∫f(x)dxNotes
xnx^nxn+1n+1+C\frac{x^{n+1}}{n+1}+Cn ≠ -1
1/x1/xlnx+C\ln|x|+Cx ≠ 0
exe^xex+Ce^x+C-
axa^xax/lna+Ca^x/\ln a+Ca > 0, a ≠ 1
sinx\sin xcosx+C-\cos x+C-
cosx\cos xsinx+C\sin x+C-
sec2x\sec^2 xtanx+C\tan x+C-
csc2x\csc^2 xcotx+C-\cot x+C-
tanx\tan xlnsecx+C\ln|\sec x|+C-
cotx\cot xlnsinx+C\ln|\sin x|+C-
secx\sec xlnsecx+tanx+C\ln|\sec x+\tan x|+C-
cscx\csc xlncscx+cotx+C-\ln|\csc x+\cot x|+C-
1/1x21/\sqrt{1-x^2}arcsinx+C\arcsin x+C|x| < 1
1/(1+x2)1/(1+x^2)arctanx+C\arctan x+C-
1/a2x21/\sqrt{a^2-x^2}arcsin(x/a)+C\arcsin(x/a)+C|x| < a
1/(a2+x2)1/(a^2+x^2)(1/a)arctan(x/a)+C(1/a)\arctan(x/a)+C-
sinhx\sinh xcoshx+C\cosh x+C-
coshx\cosh xsinhx+C\sinh x+C-

13. Self-Test Problems

Problem 1:

(x63x4+2x25)dx\int (x^6 - 3x^4 + 2x^2 - 5)\,dx

Answer

x773x55+2x335x+C\frac{x^7}{7} - \frac{3x^5}{5} + \frac{2x^3}{3} - 5x + C

Problem 2:

(4ex+35x)dx\int (4e^{-x} + 3 \cdot 5^x)\,dx

Answer

4ex+35xln5+C-4e^{-x} + \frac{3 \cdot 5^x}{\ln 5} + C

Problem 3:

(sin2x+cos3x)dx\int (\sin 2x + \cos 3x)\,dx

Answer

cos2x2+sin3x3+C-\frac{\cos 2x}{2} + \frac{\sin 3x}{3} + C

Problem 4:

549x2dx\int \frac{5}{\sqrt{49-x^2}}\,dx

Answer

5arcsinx7+C5\arcsin\frac{x}{7} + C

Problem 5:

316+x2dx\int \frac{3}{16+x^2}\,dx

Answer

34arctanx4+C\frac{3}{4}\arctan\frac{x}{4} + C

Problem 6:

(tanx+cotx)dx\int (\tan x + \cot x)\,dx

Answer

lnsecx+lnsinx+C\ln|\sec x| + \ln|\sin x| + C

14. Deriving the Formulas

Proof:

Derivation of ∫sec x dx

Multiply by (sec x + tan x)/(sec x + tan x):

secxdx=secx(secx+tanx)secx+tanxdx=sec2x+secxtanxsecx+tanxdx\int \sec x\,dx = \int \frac{\sec x(\sec x + \tan x)}{\sec x + \tan x}\,dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x}\,dx

Let u = sec x + tan x, then du = (sec x tan x + sec²x) dx:

=duu=lnu+C=lnsecx+tanx+C= \int \frac{du}{u} = \ln|u| + C = \ln|\sec x + \tan x| + C \quad \checkmark
Proof:

Derivation of ∫cot x dx

Write cot x = cos x / sin x. Let u = sin x, du = cos x dx:

cosxsinxdx=duu=lnu+C=lnsinx+C\int \frac{\cos x}{\sin x}\,dx = \int \frac{du}{u} = \ln|u| + C = \ln|\sin x| + C \quad \checkmark
Proof:

Why ∫1/(a²+x²) dx = (1/a)arctan(x/a)

Let x = a tan θ, then dx = a sec²θ dθ:

1a2+a2tan2θasec2θdθ=asec2θa2sec2θdθ=1adθ=θa+C\int \frac{1}{a^2 + a^2\tan^2\theta} \cdot a\sec^2\theta\,d\theta = \int \frac{a\sec^2\theta}{a^2\sec^2\theta}\,d\theta = \frac{1}{a}\int d\theta = \frac{\theta}{a} + C

Since θ = arctan(x/a): =1aarctanxa+C= \frac{1}{a}\arctan\frac{x}{a} + C \quad \checkmark

15. Historical Notes

The integration formulas we use today were developed over centuries by mathematicians including Newton, Leibniz, Euler, and many others.

Leonhard Euler (1707-1783) made enormous contributions to integration, including the development of hyperbolic functions and their integrals.

The notation ∫ was introduced by Leibniz in 1675, representing an elongated “S” for “summa” (sum), reflecting the connection between integration and summation.

16. Linear Arguments

Remark 5.9: Linear Argument Rule

For f(ax+b)dx\int f(ax+b)\,dx, if f(x)dx=F(x)+C\int f(x)\,dx = F(x) + C, then:

f(ax+b)dx=1aF(ax+b)+C\int f(ax+b)\,dx = \frac{1}{a}F(ax+b) + C
Example 5.52: Sin with Linear Argument

Problem: sin(3x+2)dx\int \sin(3x+2)\,dx

=13cos(3x+2)+C= -\frac{1}{3}\cos(3x+2) + C
Example 5.53: Exponential with Linear Argument

Problem: e4x1dx\int e^{4x-1}\,dx

=14e4x1+C= \frac{1}{4}e^{4x-1} + C
Example 5.54: Power with Linear Argument

Problem: (2x+5)7dx\int (2x+5)^7\,dx

=12(2x+5)88+C=(2x+5)816+C= \frac{1}{2} \cdot \frac{(2x+5)^8}{8} + C = \frac{(2x+5)^8}{16} + C
Example 5.55: Sec² with Linear Argument

Problem: sec2(5x)dx\int \sec^2(5x)\,dx

=15tan(5x)+C= \frac{1}{5}\tan(5x) + C
Example 5.56: Reciprocal with Linear Argument

Problem: 13x+7dx\int \frac{1}{3x+7}\,dx

=13ln3x+7+C= \frac{1}{3}\ln|3x+7| + C
Example 5.57: Arcsin Form with Linear

Problem: 11(2x)2dx=114x2dx\int \frac{1}{\sqrt{1-(2x)^2}}\,dx = \int \frac{1}{\sqrt{1-4x^2}}\,dx

=12arcsin(2x)+C= \frac{1}{2}\arcsin(2x) + C

17. Challenge Problems

Challenge 1:

x5+x3x+2x3dx\int \frac{x^5 + x^3 - x + 2}{x^3}\,dx

Solution

Simplify: x2+1x2+2x3x^2 + 1 - x^{-2} + 2x^{-3}

=x33+x+1x1x2+C= \frac{x^3}{3} + x + \frac{1}{x} - \frac{1}{x^2} + C

Challenge 2:

(exex)2dx\int (e^x - e^{-x})^2\,dx

Solution

Expand: e2x2+e2xe^{2x} - 2 + e^{-2x}

=e2x22xe2x2+C= \frac{e^{2x}}{2} - 2x - \frac{e^{-2x}}{2} + C

Challenge 3:

sin2x+cos2xcos2xdx\int \frac{\sin^2 x + \cos^2 x}{\cos^2 x}\,dx

Solution

Simplify using sin²x + cos²x = 1:

=sec2xdx=tanx+C= \int \sec^2 x\,dx = \tan x + C

Challenge 4:

1+tan2xsec2xdx\int \frac{1+\tan^2 x}{\sec^2 x}\,dx

Solution

Since 1 + tan²x = sec²x:

=1dx=x+C= \int 1\,dx = x + C

Challenge 5:

394x2dx\int \frac{3}{\sqrt{9-4x^2}}\,dx

Solution

Write as 39(14x29)=11(2x3)2\frac{3}{\sqrt{9(1-\frac{4x^2}{9})}} = \frac{1}{\sqrt{1-(\frac{2x}{3})^2}}

=32arcsin2x3+C= \frac{3}{2}\arcsin\frac{2x}{3} + C

18. Applications

Example 5.58: Position from Velocity

Problem: A particle has velocity v(t) = 3t² - 2t + 1. Find position s(t) if s(0) = 5.

Solution:

s(t)=(3t22t+1)dt=t3t2+t+Cs(t) = \int (3t^2 - 2t + 1)\,dt = t^3 - t^2 + t + C

Using s(0) = 5: C = 5, so s(t)=t3t2+t+5s(t) = t^3 - t^2 + t + 5

Example 5.59: Marginal Cost

Problem: Marginal cost is C'(x) = 100 + 0.5x. Find total cost if fixed costs are $2000.

Solution:

C(x)=(100+0.5x)dx=100x+0.25x2+CC(x) = \int (100 + 0.5x)\,dx = 100x + 0.25x^2 + C

Using C(0) = 2000: C(x)=100x+0.25x2+2000C(x) = 100x + 0.25x^2 + 2000

Example 5.60: Decay Rate

Problem: The rate of decay is dN/dt = -0.05N. Given N(0) = 1000, this is solved by:

N(t)=1000e0.05tN(t) = 1000e^{-0.05t}

The integral e0.05tdt=20e0.05t+C\int e^{-0.05t}\,dt = -20e^{-0.05t} + C is used in the solution process.

19. Additional Practice

Example 5.61: Mixed 1
(x1/2+x1/2+x3/2)dx=2x+2xx3+2x2x5+C\int (x^{-1/2} + x^{1/2} + x^{3/2})\,dx = 2\sqrt{x} + \frac{2x\sqrt{x}}{3} + \frac{2x^2\sqrt{x}}{5} + C
Example 5.62: Mixed 2
x24x+2dx=(x2)dx=x222x+C\int \frac{x^2 - 4}{x + 2}\,dx = \int (x-2)\,dx = \frac{x^2}{2} - 2x + C
Example 5.63: Mixed 3
(secx+tanx)2dx=(sec2x+2secxtanx+tan2x)dx\int (\sec x + \tan x)^2\,dx = \int (\sec^2 x + 2\sec x \tan x + \tan^2 x)\,dx
=(2sec2x+2secxtanx1)dx=2tanx+2secxx+C= \int (2\sec^2 x + 2\sec x \tan x - 1)\,dx = 2\tan x + 2\sec x - x + C
Example 5.64: Mixed 4
1x(1+x)dx\int \frac{1}{\sqrt{x}(1+x)}\,dx

Let u = √x, then x = u², dx = 2u du:

=2uu(1+u2)du=2arctan(x)+C= \int \frac{2u}{u(1+u^2)}\,du = 2\arctan(\sqrt{x}) + C

20. Quick Reference Card

Power

xn=xn+1n+1\int x^n = \frac{x^{n+1}}{n+1}

1x=lnx\int \frac{1}{x} = \ln|x|

Exponential

ex=ex\int e^x = e^x

ax=axlna\int a^x = \frac{a^x}{\ln a}

Trig Basic

sinx=cosx\int \sin x = -\cos x

cosx=sinx\int \cos x = \sin x

Trig Squares

sec2x=tanx\int \sec^2 x = \tan x

csc2x=cotx\int \csc^2 x = -\cot x

Inverse Trig

11x2=arcsinx\int \frac{1}{\sqrt{1-x^2}} = \arcsin x

11+x2=arctanx\int \frac{1}{1+x^2} = \arctan x

Hyperbolic

sinhx=coshx\int \sinh x = \cosh x

coshx=sinhx\int \cosh x = \sinh x

21. Final Practice Set

1. (7x64x3+2)dx\int (7x^6 - 4x^3 + 2)\,dx

Answer

x7x4+2x+Cx^7 - x^4 + 2x + C

2. (5e3x24x)dx\int (5e^{3x} - 2 \cdot 4^x)\,dx

Answer

5e3x324xln4+C\frac{5e^{3x}}{3} - \frac{2 \cdot 4^x}{\ln 4} + C

3. (sin4xcos2x)dx\int (\sin 4x - \cos 2x)\,dx

Answer

cos4x4sin2x2+C-\frac{\cos 4x}{4} - \frac{\sin 2x}{2} + C

4. 636x2dx\int \frac{6}{\sqrt{36-x^2}}\,dx

Answer

6arcsinx6+C6\arcsin\frac{x}{6} + C

5. 425+x2dx\int \frac{4}{25+x^2}\,dx

Answer

45arctanx5+C\frac{4}{5}\arctan\frac{x}{5} + C

6. (3sec2x+2csc2x)dx\int (3\sec^2 x + 2\csc^2 x)\,dx

Answer

3tanx2cotx+C3\tan x - 2\cot x + C

7. x4+x21x2dx\int \frac{x^4+x^2-1}{x^2}\,dx

Answer

x33+x+1x+C\frac{x^3}{3} + x + \frac{1}{x} + C

8. (5sinhx3coshx)dx\int (5\sinh x - 3\cosh x)\,dx

Answer

5coshx3sinhx+C5\cosh x - 3\sinh x + C

22. Differentiation vs Integration

FunctionDerivativeIntegral
xnx^nnxn1nx^{n-1}xn+1n+1+C\frac{x^{n+1}}{n+1}+C
exe^xexe^xex+Ce^x+C
lnx\ln x1/x1/xxlnxx+Cx\ln x - x + C
sinx\sin xcosx\cos xcosx+C-\cos x+C
cosx\cos xsinx-\sin xsinx+C\sin x+C
tanx\tan xsec2x\sec^2 xlnsecx+C\ln|\sec x|+C
arctanx\arctan x11+x2\frac{1}{1+x^2}xarctanx12ln(1+x2)+Cx\arctan x - \frac{1}{2}\ln(1+x^2)+C

23. More Challenge Problems

Example 5.65: Algebraic Manipulation

Problem: (x+1)2xdx\int \frac{(x+1)^2}{x}\,dx

Expand: =x2+2x+1xdx=(x+2+1x)dx= \int \frac{x^2+2x+1}{x}\,dx = \int (x + 2 + \frac{1}{x})\,dx

=x22+2x+lnx+C= \frac{x^2}{2} + 2x + \ln|x| + C
Example 5.66: Trig Identity

Problem: 1sin2xcos2xdx\int \frac{1}{\sin^2 x \cos^2 x}\,dx

Use: sin2xcos2x=sin22x4\sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}

=4csc22xdx=2cot2x+C= 4\int \csc^2 2x\,dx = -2\cot 2x + C
Example 5.67: Completing Square

Problem: 1x24x+13dx\int \frac{1}{x^2 - 4x + 13}\,dx

Complete: x24x+13=(x2)2+9x^2 - 4x + 13 = (x-2)^2 + 9

=13arctanx23+C= \frac{1}{3}\arctan\frac{x-2}{3} + C
Example 5.68: Product Expansion

Problem: (ex+1)(ex1)dx=(e2x1)dx\int (e^x + 1)(e^x - 1)\,dx = \int (e^{2x} - 1)\,dx

=e2x2x+C= \frac{e^{2x}}{2} - x + C
Example 5.69: Hyperbolic Identity

Problem: tanhxdx=sinhxcoshxdx\int \tanh x\,dx = \int \frac{\sinh x}{\cosh x}\,dx

Let u = cosh x, du = sinh x dx:

=lncoshx+C=ln(coshx)+C= \ln|\cosh x| + C = \ln(\cosh x) + C
Example 5.70: Sum of Squares

Problem: x21+x2dx\int \frac{x^2}{1+x^2}\,dx

Write: x21+x2=111+x2\frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2}

=xarctanx+C= x - \arctan x + C

24. Even More Practice

Problem A:

(x3/2x3/2)dx\int (x^{3/2} - x^{-3/2})\,dx

=2x5/25+2x1/2+C= \frac{2x^{5/2}}{5} + 2x^{-1/2} + C

Problem B:

ex+ex2dx\int \frac{e^x + e^{-x}}{2}\,dx

=exex2+C=sinhx+C= \frac{e^x - e^{-x}}{2} + C = \sinh x + C

Problem C:

(1+tan2x)dx\int (1 + \tan^2 x)\,dx

=sec2xdx=tanx+C= \int \sec^2 x\,dx = \tan x + C

Problem D:

2100x2dx\int \frac{2}{\sqrt{100-x^2}}\,dx

=2arcsinx10+C= 2\arcsin\frac{x}{10} + C

Problem E:

549+x2dx\int \frac{5}{49+x^2}\,dx

=57arctanx7+C= \frac{5}{7}\arctan\frac{x}{7} + C

Problem F:

(7x+ln7)dx\int (7^x + \ln 7)\,dx

=7xln7+xln7+C= \frac{7^x}{\ln 7} + x\ln 7 + C

25. Concept Map

Algebraic

  • • Power rule: xnxn+1n+1x^n \to \frac{x^{n+1}}{n+1}
  • • Reciprocal: 1xlnx\frac{1}{x} \to \ln|x|
  • • Simplify first when possible

Exponential

  • • Natural: exexe^x \to e^x
  • • General: axaxlnaa^x \to \frac{a^x}{\ln a}
  • • Linear arg: divide by coefficient

Trigonometric

  • • sin/cos: sign changes
  • • tan/cot: log results
  • • sec/csc: complex log forms

Inverse Trig

  • 11x2arcsin\frac{1}{\sqrt{1-x^2}} \to \arcsin
  • 11+x2arctan\frac{1}{1+x^2} \to \arctan
  • • Generalized forms with a

Hyperbolic

  • sinhxcoshx\sinh x \to \cosh x
  • coshxsinhx\cosh x \to \sinh x
  • • Related to exponentials

Tips

  • • Always add + C
  • • Verify by differentiating
  • • Simplify before integrating
Key Takeaways

Power Rule

xndx=xn+1n+1+C\int x^n\,dx = \frac{x^{n+1}}{n+1} + C (n ≠ -1)

Exponential

exdx=ex+C\int e^x\,dx = e^x + C, axdx=axlna+C\int a^x\,dx = \frac{a^x}{\ln a} + C

Inverse Trig

arcsin: 1/1x21/\sqrt{1-x^2}, arctan: 1/(1+x2)1/(1+x^2)

Verification

Always differentiate to check your answer

  • Memorize the basic formulas
  • Watch for linear arguments (divide by coefficient)
  • Simplify before integrating when possible
  • Practice recognizing patterns
  • Use the generalized forms for a² ± x² patterns
  • Always add the constant of integration C
  • Verify by differentiating your answer
  • Know the special case for n = -1

Final Quick Reference

1a2+x2dx=1aarctanxa+C\int \frac{1}{a^2+x^2}\,dx = \frac{1}{a}\arctan\frac{x}{a} + C
1a2x2dx=12alna+xax+C\int \frac{1}{a^2-x^2}\,dx = \frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right| + C