MathIsimple
π
θ
Δ
ε
Home/Calculus/Indefinite Integration/Integration by Parts
CALC-5.4
4-5 hours

Integration by Parts

The product rule in reverse: a powerful technique for products of functions.

Learning Objectives
  • Understand integration by parts as the product rule in reverse
  • Apply the LIATE rule for choosing u and dv
  • Use the tabular method for repeated integration by parts
  • Integrate products of polynomials with exponentials or trig
  • Integrate logarithmic and inverse trigonometric functions

1. The Integration by Parts Formula

Theorem 5.15: Integration by Parts

If u and v are differentiable functions, then:

udv=uvvdu\int u\,dv = uv - \int v\,du

Or equivalently, if u = f(x) and v = g(x):

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f(x)g'(x)\,dx = f(x)g(x) - \int f'(x)g(x)\,dx
Proof:

Start from the product rule:

ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}

Integrate both sides:

uv=udv+vduuv = \int u\,dv + \int v\,du

Rearranging: udv=uvvdu\int u\,dv = uv - \int v\,du

2. The LIATE Rule

Choose u (in order of priority):

LLogarithmic: ln x, log x
IInverse trig: arcsin x, arctan x, etc.
AAlgebraic: x, x², polynomials
TTrigonometric: sin x, cos x, etc.
EExponential: eˣ, 2ˣ, etc.

Choose u from higher in the list, dv from lower.

Example 5.43: ∫x eˣ dx

Problem: Evaluate xexdx\int x e^x\,dx

Solution:

By LIATE: u = x (Algebraic), dv = eˣ dx (Exponential)

Then: du = dx, v = eˣ

xexdx=xexexdx=xexex+C=ex(x1)+C\int x e^x\,dx = xe^x - \int e^x\,dx = xe^x - e^x + C = e^x(x-1) + C
Example 5.44: ∫ln x dx

Problem: Evaluate lnxdx\int \ln x\,dx

Solution:

Let u = ln x, dv = dx. Then du = dx/x, v = x

lnxdx=xlnxx1xdx=xlnx1dx=xlnxx+C\int \ln x\,dx = x\ln x - \int x \cdot \frac{1}{x}\,dx = x\ln x - \int 1\,dx = x\ln x - x + C
Example 5.45: ∫x cos x dx

Problem: Evaluate xcosxdx\int x \cos x\,dx

Solution:

Let u = x, dv = cos x dx. Then du = dx, v = sin x

xcosxdx=xsinxsinxdx=xsinx+cosx+C\int x \cos x\,dx = x\sin x - \int \sin x\,dx = x\sin x + \cos x + C

3. Repeated Integration by Parts

Example 5.46: ∫x² eˣ dx

Problem: Evaluate x2exdx\int x^2 e^x\,dx

Solution (First application):

u = x², dv = eˣ dx → du = 2x dx, v = eˣ

x2exdx=x2ex2xexdx\int x^2 e^x\,dx = x^2 e^x - \int 2x e^x\,dx

Second application:

u = 2x, dv = eˣ dx → du = 2 dx, v = eˣ

=x2ex(2xex2exdx)=x2ex2xex+2ex+C= x^2 e^x - \left(2xe^x - \int 2e^x\,dx\right) = x^2 e^x - 2xe^x + 2e^x + C
=ex(x22x+2)+C= e^x(x^2 - 2x + 2) + C
Remark 5.8: Tabular Method

For integrals of the form xneaxdx\int x^n e^{ax}\,dx or xnsin(ax)dx\int x^n \sin(ax)\,dx, use the tabular method:

Create two columns: derivatives of u (until 0) and integrals of dv

Multiply diagonally with alternating signs: +, -, +, -, ...

4. Cycling Integrals

Example 5.47: ∫eˣ sin x dx

Problem: Evaluate exsinxdx\int e^x \sin x\,dx

Solution:

Let I = exsinxdx\int e^x \sin x\,dx

First application: u = sin x, dv = eˣ dx

I=exsinxexcosxdxI = e^x \sin x - \int e^x \cos x\,dx

Second application: u = cos x, dv = eˣ dx

I=exsinx(excosxex(sinx)dx)I = e^x \sin x - \left(e^x \cos x - \int e^x (-\sin x)\,dx\right)
I=exsinxexcosxexsinxdx=ex(sinxcosx)II = e^x \sin x - e^x \cos x - \int e^x \sin x\,dx = e^x(\sin x - \cos x) - I

Solve for I:

2I=ex(sinxcosx)I=ex(sinxcosx)2+C2I = e^x(\sin x - \cos x) \Rightarrow I = \frac{e^x(\sin x - \cos x)}{2} + C

5. Inverse Trigonometric Functions

Example 5.48: ∫arctan x dx

Problem: Evaluate arctanxdx\int \arctan x\,dx

Solution:

Let u = arctan x, dv = dx. Then du = dx/(1+x²), v = x

arctanxdx=xarctanxx1+x2dx\int \arctan x\,dx = x\arctan x - \int \frac{x}{1+x^2}\,dx

For the remaining integral, let w = 1+x², dw = 2x dx:

=xarctanx12ln(1+x2)+C= x\arctan x - \frac{1}{2}\ln(1+x^2) + C
Example 5.49: ∫arcsin x dx

Problem: Evaluate arcsinxdx\int \arcsin x\,dx

Solution:

Let u = arcsin x, dv = dx. Then du = dx/√(1-x²), v = x

arcsinxdx=xarcsinxx1x2dx\int \arcsin x\,dx = x\arcsin x - \int \frac{x}{\sqrt{1-x^2}}\,dx

For the remaining integral, let w = 1-x², dw = -2x dx:

=xarcsinx+1x2+C= x\arcsin x + \sqrt{1-x^2} + C
Integration by Parts Quiz
8
Questions
0
Correct
0%
Accuracy
1
xexdx=\int x e^x\,dx =
Easy
Not attempted
2
lnxdx=\int \ln x\,dx =
Easy
Not attempted
3
x2exdx\int x^2 e^x\,dx requires how many applications?
Medium
Not attempted
4
In LIATE, what does L stand for?
Easy
Not attempted
5
xcosxdx=\int x \cos x\,dx =
Medium
Not attempted
6
exsinxdx\int e^x \sin x\,dx requires:
Hard
Not attempted
7
arctanxdx=\int \arctan x\,dx =
Hard
Not attempted
8
For x3e2xdx\int x^3 e^{2x}\,dx, which method is efficient?
Medium
Not attempted

Frequently Asked Questions

What is the integration by parts formula?

∫u dv = uv - ∫v du. It comes from the product rule: d(uv) = u dv + v du.

What is the LIATE rule?

A priority guide for choosing u: Logarithmic > Inverse trig > Algebraic > Trig > Exponential. Choose u from higher in the list.

When does integration by parts cycle?

For integrals like ∫eˣ sin x dx. After two applications, the original integral returns. Set up equation I = ... - I and solve.

What is the tabular method?

A shortcut for repeated parts with polynomial times exponential/trig. Create columns of derivatives and integrals, multiply diagonally with alternating signs.

How do I integrate ln x?

Let u = ln x, dv = dx. Then du = dx/x, v = x. Result: x ln x - x + C.

Can I choose u and dv differently?

Yes, but a bad choice may make the integral harder. LIATE usually gives the best choice.

6. Common Mistakes

Wrong choice of u

Following LIATE usually gives the simplest result. Bad choices make the integral harder.

Sign errors

Remember: ∫u dv = uv - ∫v du. The minus sign is crucial.

Not recognizing cycling

When the original integral reappears, solve algebraically for I.

7. More Worked Examples

Example 5.50: x² sin x

Problem: x2sinxdx\int x^2 \sin x\,dx

First application: u = x², dv = sin x dx

=x2cosx+2xcosxdx= -x^2\cos x + 2\int x\cos x\,dx

Second application: u = x, dv = cos x dx

=x2cosx+2(xsinx+cosx)+C=x2cosx+2xsinx+2cosx+C= -x^2\cos x + 2(x\sin x + \cos x) + C = -x^2\cos x + 2x\sin x + 2\cos x + C
Example 5.51: x³ eˣ

Problem: x3exdx\int x^3 e^x\,dx

Using tabular method (3 applications):

=x3ex3x2ex+6xex6ex+C=ex(x33x2+6x6)+C= x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + C = e^x(x^3 - 3x^2 + 6x - 6) + C
Example 5.52: eˣ cos x

Problem: excosxdx\int e^x \cos x\,dx

Let I = ∫eˣ cos x dx. Apply parts twice:

I=excosx+exsinxII = e^x\cos x + e^x\sin x - I
2I=ex(cosx+sinx)I=ex(cosx+sinx)2+C2I = e^x(\cos x + \sin x) \Rightarrow I = \frac{e^x(\cos x + \sin x)}{2} + C
Example 5.53: ln² x

Problem: (lnx)2dx\int (\ln x)^2\,dx

Let u = (ln x)², dv = dx:

=x(lnx)22lnxdx=x(lnx)22(xlnxx)+C= x(\ln x)^2 - 2\int \ln x\,dx = x(\ln x)^2 - 2(x\ln x - x) + C
=x(lnx)22xlnx+2x+C= x(\ln x)^2 - 2x\ln x + 2x + C
Example 5.54: x arcsin x

Problem: xarcsinxdx\int x \arcsin x\,dx

Let u = arcsin x, dv = x dx:

=x22arcsinxx221x2dx= \frac{x^2}{2}\arcsin x - \int \frac{x^2}{2\sqrt{1-x^2}}\,dx

The remaining integral uses substitution:

=x22arcsinx+121x212arcsinx+C= \frac{x^2}{2}\arcsin x + \frac{1}{2}\sqrt{1-x^2} - \frac{1}{2}\arcsin x + C

8. Tabular Method Explained

Steps:

  1. Create two columns: derivatives of u (until 0) and integrals of dv
  2. Draw diagonal arrows connecting adjacent rows
  3. Alternate signs: +, -, +, -, ...
  4. Multiply along each diagonal and sum
Example 5.55: Tabular: x⁴eˣ
Signu (diff)dv (int)
+x⁴
4x³
+12x²
24x
+24
0
=ex(x44x3+12x224x+24)+C= e^x(x^4 - 4x^3 + 12x^2 - 24x + 24) + C

9. Practice Problems

1. xsin2xdx\int x \sin 2x\,dx

Answer

x2cos2x+14sin2x+C-\frac{x}{2}\cos 2x + \frac{1}{4}\sin 2x + C

2. x2lnxdx\int x^2 \ln x\,dx

Answer

x33lnxx39+C\frac{x^3}{3}\ln x - \frac{x^3}{9} + C

3. e2xsinxdx\int e^{2x} \sin x\,dx

Answer

e2x(2sinxcosx)5+C\frac{e^{2x}(2\sin x - \cos x)}{5} + C

4. arccosxdx\int \arccos x\,dx

Answer

xarccosx1x2+Cx\arccos x - \sqrt{1-x^2} + C

5. xexdx\int x e^{-x}\,dx

Answer

xexex+C=ex(x+1)+C-xe^{-x} - e^{-x} + C = -e^{-x}(x+1) + C

6. x2cosxdx\int x^2 \cos x\,dx

Answer

x2sinx+2xcosx2sinx+Cx^2\sin x + 2x\cos x - 2\sin x + C

10. Special Cases

Example 5.56: sec³x

Problem: sec3xdx\int \sec^3 x\,dx

Let u = sec x, dv = sec²x dx:

I=secxtanxsecxtan2xdxI = \sec x \tan x - \int \sec x \tan^2 x\,dx

Use tan²x = sec²x - 1:

I=secxtanx(sec3xsecx)dx=secxtanxI+lnsecx+tanxI = \sec x \tan x - \int (\sec^3 x - \sec x)\,dx = \sec x\tan x - I + \ln|\sec x + \tan x|
2I=secxtanx+lnsecx+tanxI=12(secxtanx+lnsecx+tanx)+C2I = \sec x\tan x + \ln|\sec x + \tan x| \Rightarrow I = \frac{1}{2}(\sec x\tan x + \ln|\sec x + \tan x|) + C
Example 5.57: √(a²+x²)

Problem: a2+x2dx\int \sqrt{a^2+x^2}\,dx

Let u = √(a²+x²), dv = dx:

=xa2+x2x2a2+x2dx= x\sqrt{a^2+x^2} - \int \frac{x^2}{\sqrt{a^2+x^2}}\,dx

Simplify the remaining integral:

=xa2+x2a2+x2dx+a2dxa2+x2= x\sqrt{a^2+x^2} - \int \sqrt{a^2+x^2}\,dx + a^2\int \frac{dx}{\sqrt{a^2+x^2}}
2I=xa2+x2+a2lnx+a2+x22I = x\sqrt{a^2+x^2} + a^2\ln|x + \sqrt{a^2+x^2}|
I=xa2+x22+a22lnx+a2+x2+CI = \frac{x\sqrt{a^2+x^2}}{2} + \frac{a^2}{2}\ln|x + \sqrt{a^2+x^2}| + C

11. Study Tips

1. LIATE is a Guide

Not an absolute rule, but works well in most cases.

2. Check Your Choice

If the integral gets harder, try switching u and dv.

3. Watch for Patterns

polynomial × exp/trig → tabular method

4. Cycling Integrals

eˣ sin x, eˣ cos x require solving for I

5. Verify

Always differentiate to check your answer.

6. Combine Methods

May need substitution after parts or vice versa.

12. Additional Examples

∫x ln²x dx

=x22(lnx)2x22lnx+x24+C= \frac{x^2}{2}(\ln x)^2 - \frac{x^2}{2}\ln x + \frac{x^2}{4} + C

∫x² arctan x dx

=x33arctanxx26+16ln(1+x2)+C= \frac{x^3}{3}\arctan x - \frac{x^2}{6} + \frac{1}{6}\ln(1+x^2) + C

∫sin x ln(cos x) dx

=cosxcosxln(cosx)+C= \cos x - \cos x \ln(\cos x) + C

13. Common Integration by Parts Results

IntegralResult
lnxdx\int \ln x\,dxxlnxx+Cx\ln x - x + C
xexdx\int x e^x\,dxex(x1)+Ce^x(x-1) + C
xsinxdx\int x\sin x\,dxxcosx+sinx+C-x\cos x + \sin x + C
xcosxdx\int x\cos x\,dxxsinx+cosx+Cx\sin x + \cos x + C
arctanxdx\int \arctan x\,dxxarctanx12ln(1+x2)+Cx\arctan x - \frac{1}{2}\ln(1+x^2) + C
arcsinxdx\int \arcsin x\,dxxarcsinx+1x2+Cx\arcsin x + \sqrt{1-x^2} + C
exsinxdx\int e^x\sin x\,dxex(sinxcosx)2+C\frac{e^x(\sin x - \cos x)}{2} + C

14. Final Practice Set

P1: x3sinxdx\int x^3 \sin x\,dx

Answer

x3cosx+3x2sinx+6xcosx6sinx+C-x^3\cos x + 3x^2\sin x + 6x\cos x - 6\sin x + C

P2: x2exdx\int x^2 e^{-x}\,dx

Answer

ex(x2+2x+2)+C-e^{-x}(x^2 + 2x + 2) + C

P3: excosxdx\int e^{-x} \cos x\,dx

Answer

ex(sinxcosx)2+C\frac{e^{-x}(\sin x - \cos x)}{2} + C

P4: xarctanxdx\int x \arctan x\,dx

Answer

x22arctanxx2+12arctanx+C\frac{x^2}{2}\arctan x - \frac{x}{2} + \frac{1}{2}\arctan x + C

15. Advanced Examples

Example 5.58: ∫x²sin²x dx

Use identity sin²x = (1-cos2x)/2 first:

x2sin2xdx=12x2(1cos2x)dx\int x^2 \sin^2 x\,dx = \frac{1}{2}\int x^2(1-\cos 2x)\,dx
=x3612x2cos2xdx= \frac{x^3}{6} - \frac{1}{2}\int x^2\cos 2x\,dx

Apply tabular method for the second integral.

Example 5.59: ∫eˣ sin²x dx

Use sin²x = (1-cos2x)/2:

exsin2xdx=12exdx12excos2xdx\int e^x \sin^2 x\,dx = \frac{1}{2}\int e^x\,dx - \frac{1}{2}\int e^x\cos 2x\,dx
=ex2ex(2sin2x+cos2x)10+C= \frac{e^x}{2} - \frac{e^x(2\sin 2x + \cos 2x)}{10} + C
Example 5.60: ∫ln(1+x²) dx

Let u = ln(1+x²), dv = dx:

=xln(1+x2)2x21+x2dx= x\ln(1+x^2) - \int \frac{2x^2}{1+x^2}\,dx
=xln(1+x2)2x+2arctanx+C= x\ln(1+x^2) - 2x + 2\arctan x + C

16. Reduction Formulas

∫sinⁿx dx

In=sinn1xcosxn+n1nIn2I_n = -\frac{\sin^{n-1}x\cos x}{n} + \frac{n-1}{n}I_{n-2}

∫cosⁿx dx

In=cosn1xsinxn+n1nIn2I_n = \frac{\cos^{n-1}x\sin x}{n} + \frac{n-1}{n}I_{n-2}

∫secⁿx dx

In=secn2xtanxn1+n2n1In2I_n = \frac{\sec^{n-2}x\tan x}{n-1} + \frac{n-2}{n-1}I_{n-2}

∫(ln x)ⁿ dx

In=x(lnx)nnIn1I_n = x(\ln x)^n - nI_{n-1}

17. More Practice Problems

Q1: xsin2xdx\int x \sin^2 x\,dx

Answer

x24xsin2x4cos2x8+C\frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} + C

Q2: (lnx)3dx\int (\ln x)^3\,dx

Answer

x(lnx)33x(lnx)2+6xlnx6x+Cx(\ln x)^3 - 3x(\ln x)^2 + 6x\ln x - 6x + C

Q3: x4e2xdx\int x^4 e^{2x}\,dx

Answer

e2x2(x42x3+3x23x+32)+C\frac{e^{2x}}{2}(x^4 - 2x^3 + 3x^2 - 3x + \frac{3}{2}) + C

Q4: eaxsinbxdx\int e^{ax} \sin bx\,dx

Answer

eax(asinbxbcosbx)a2+b2+C\frac{e^{ax}(a\sin bx - b\cos bx)}{a^2+b^2} + C

Q5: sec5xdx\int \sec^5 x\,dx

Hint

Use reduction formula: I₅ = (sec³x tan x)/4 + (3/4)I₃

18. Chapter Summary

When to Use

  • • Product of different function types
  • • Single inverse trig or log functions
  • • Powers of trig with exp

Key Techniques

  • • LIATE rule for choosing u
  • • Tabular method for polynomials
  • • Solve for I when cycling

19. Quick Reference Card

Log/Inv Trig

  • • u = ln x, arctan x, etc.
  • • dv = polynomial dx

Poly × Exp/Trig

  • • u = polynomial
  • • dv = eˣ dx or trig dx

Exp × Trig

  • • Apply twice
  • • Solve for I

20. Additional Practice

x2arctanxdx=x33arctanxx26+ln(1+x2)6+C\int x^2 \arctan x\,dx = \frac{x^3}{3}\arctan x - \frac{x^2}{6} + \frac{\ln(1+x^2)}{6} + C

xsec2xdx=xtanx+lncosx+C\int x \sec^2 x\,dx = x\tan x + \ln|\cos x| + C

e2xcos3xdx=e2x(2cos3x+3sin3x)13+C\int e^{2x} \cos 3x\,dx = \frac{e^{2x}(2\cos 3x + 3\sin 3x)}{13} + C

lnxsinxdx=lnxcosx+Ci(x)+C\int \ln x \sin x\,dx = -\ln x \cos x + \text{Ci}(x) + C

21. Even More Examples

Example 5.61: x arctan²x

Problem: x(arctanx)2dx\int x (\arctan x)^2\,dx

Let u = (arctan x)², dv = x dx:

=x22(arctanx)2x2arctanx1+x2dx= \frac{x^2}{2}(\arctan x)^2 - \int \frac{x^2 \arctan x}{1+x^2}\,dx
Example 5.62: x² ln²x

Problem: x2(lnx)2dx\int x^2 (\ln x)^2\,dx

Apply parts twice:

=x33(lnx)22x39lnx+2x327+C= \frac{x^3}{3}(\ln x)^2 - \frac{2x^3}{9}\ln x + \frac{2x^3}{27} + C
Example 5.63: eˣ sin x cos x

Problem: exsinxcosxdx\int e^x \sin x \cos x\,dx

Use sin x cos x = (sin 2x)/2:

=12exsin2xdx=ex(sin2x2cos2x)10+C= \frac{1}{2}\int e^x \sin 2x\,dx = \frac{e^x(\sin 2x - 2\cos 2x)}{10} + C

22. Challenge Problems

C1: x5ex2dx\int x^5 e^{x^2}\,dx

Hint

First substitute u = x², then use parts

C2: (lnx)4dx\int (\ln x)^4\,dx

Hint

Use reduction: Iₙ = x(ln x)ⁿ - nIₙ₋₁

C3: exdx\int e^{\sqrt{x}}\,dx

Hint

Substitute u = √x first, then parts

23. Final Summary

Type 1: ln x, arctan x

u = log/inv trig, dv = algebraic

Type 2: xⁿ × eˣ/sin/cos

u = polynomial, use tabular method

Type 3: eˣ × sin/cos

Apply twice, solve for I

24. Additional Examples

xln(x+1)dx=(x21)ln(x+1)2x24+x2+C\int x \ln(x+1)\,dx = \frac{(x^2-1)\ln(x+1)}{2} - \frac{x^2}{4} + \frac{x}{2} + C

x2e3xdx=e3x(9x26x+2)27+C\int x^2 e^{3x}\,dx = \frac{e^{3x}(9x^2-6x+2)}{27} + C

xcoshxdx=xsinhxcoshx+C\int x \cosh x\,dx = x\sinh x - \cosh x + C

arcsin2xdx=xarcsin2x+21x2arcsinx2x+C\int \arcsin^2 x\,dx = x\arcsin^2 x + 2\sqrt{1-x^2}\arcsin x - 2x + C

25. More Worked Examples

Example 5.64: x sinh x

Problem: xsinhxdx\int x \sinh x\,dx

Let u = x, dv = sinh x dx:

=xcoshxcoshxdx=xcoshxsinhx+C= x\cosh x - \int \cosh x\,dx = x\cosh x - \sinh x + C
Example 5.65: x² arcsin x

Problem: x2arcsinxdx\int x^2 \arcsin x\,dx

=x33arcsinxx331x2dx= \frac{x^3}{3}\arcsin x - \int \frac{x^3}{3\sqrt{1-x^2}}\,dx

The remaining integral uses substitution u = 1-x²

Example 5.66: ln(ln x)

Problem: ln(lnx)dx\int \ln(\ln x)\,dx

Let u = ln(ln x), dv = dx:

=xln(lnx)1lnxdx= x\ln(\ln x) - \int \frac{1}{\ln x}\,dx

The integral ∫1/ln x dx = li(x) (logarithmic integral)

26. Final Practice Set

F1: x5cosxdx\int x^5 \cos x\,dx

Hint

Use tabular method (5 rows)

F2: exsin2xdx\int e^{-x} \sin 2x\,dx

Answer

ex(sin2x2cos2x)5+C\frac{e^{-x}(-\sin 2x - 2\cos 2x)}{5} + C

F3: xarcsecxdx\int x \text{arcsec} x\,dx

Hint

u = arcsec x, dv = x dx

F4: (lnx)5dx\int (\ln x)^5\,dx

Hint

Reduction: Iₙ = x(ln x)ⁿ - nIₙ₋₁

27. Important Results Summary

xnexdx=exk=0n(1)nkn!k!xk+C\int x^n e^x\,dx = e^x \sum_{k=0}^{n}(-1)^{n-k}\frac{n!}{k!}x^k + C
eaxsinbxdx=eax(asinbxbcosbx)a2+b2+C\int e^{ax}\sin bx\,dx = \frac{e^{ax}(a\sin bx - b\cos bx)}{a^2+b^2} + C
eaxcosbxdx=eax(acosbx+bsinbx)a2+b2+C\int e^{ax}\cos bx\,dx = \frac{e^{ax}(a\cos bx + b\sin bx)}{a^2+b^2} + C

28. Additional Practice

x2sin2xdx\int x^2 \sin 2x\,dx

Answer

x2cos2x2+xsin2x2+cos2x4+C-\frac{x^2\cos 2x}{2} + \frac{x\sin 2x}{2} + \frac{\cos 2x}{4} + C

x3ln2xdx\int x^3 \ln^2 x\,dx

Answer

x44ln2xx48lnx+x432+C\frac{x^4}{4}\ln^2 x - \frac{x^4}{8}\ln x + \frac{x^4}{32} + C

e3xcos4xdx\int e^{3x} \cos 4x\,dx

Answer

e3x(3cos4x+4sin4x)25+C\frac{e^{3x}(3\cos 4x + 4\sin 4x)}{25} + C

xarctan2xdx\int x \text{arctan}^2 x\,dx

Hint

u = arctan²x, dv = x dx

29. Final Worked Examples

Example 5.67: x²e²ˣ

Using tabular method:

x2e2xdx=e2x4(2x22x+1)+C\int x^2 e^{2x}\,dx = \frac{e^{2x}}{4}(2x^2 - 2x + 1) + C
Example 5.68: x arctan(x²)

Let u = arctan(x²), dv = x dx:

=x22arctan(x2)12x31+x4dx= \frac{x^2}{2}\arctan(x^2) - \frac{1}{2}\int \frac{x^3}{1+x^4}\,dx
=x22arctan(x2)18ln(1+x4)+C= \frac{x^2}{2}\arctan(x^2) - \frac{1}{8}\ln(1+x^4) + C

30. Chapter Summary

Formula

udv=uvvdu\int u\,dv = uv - \int v\,du

LIATE Rule

Log → Inv Trig → Algebraic → Trig → Exp

Methods

Tabular, Cycling, Reduction

31. Even More Examples

∫x cosh x dx

=xsinhxcoshx+C= x\sinh x - \cosh x + C

∫x² ln(x²) dx

=x33ln(x2)2x39+C=2x33lnx2x39+C= \frac{x^3}{3}\ln(x^2) - \frac{2x^3}{9} + C = \frac{2x^3}{3}\ln x - \frac{2x^3}{9} + C

∫eˣ x² sin x dx

Requires multiple applications

∫arctan²x dx

=xarctan2xln(1+x2)arctanx+xln(1+x2)2x+2arctanx+C= x\arctan^2 x - \ln(1+x^2)\arctan x + x\ln(1+x^2) - 2x + 2\arctan x + C

32. Final Practice Set

x4sinxdx\int x^4 \sin x\,dx

Method

Use tabular method (4 applications)

(lnx)4dx\int (\ln x)^4\,dx

Method

Reduction: I₄ = x(ln x)⁴ - 4I₃

e2xsin3xdx\int e^{-2x} \sin 3x\,dx

Answer

e2x(2sin3x3cos3x)13+C\frac{e^{-2x}(-2\sin 3x - 3\cos 3x)}{13} + C

x3exdx\int x^3 e^{-x}\,dx

Answer

ex(x3+3x2+6x+6)+C-e^{-x}(x^3 + 3x^2 + 6x + 6) + C

33. Additional Results

xnlnxdx=xn+1n+1lnxxn+1(n+1)2+C\int x^n \ln x\,dx = \frac{x^{n+1}}{n+1}\ln x - \frac{x^{n+1}}{(n+1)^2} + C
xneaxdx=xneaxanaxn1eaxdx\int x^n e^{ax}\,dx = \frac{x^n e^{ax}}{a} - \frac{n}{a}\int x^{n-1}e^{ax}\,dx
xnsinaxdx=xncosaxa+naxn1cosaxdx\int x^n \sin ax\,dx = -\frac{x^n\cos ax}{a} + \frac{n}{a}\int x^{n-1}\cos ax\,dx
xncosaxdx=xnsinaxanaxn1sinaxdx\int x^n \cos ax\,dx = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\,dx

34. When to Use Integration by Parts

Integrand Typeu Choicedv Choice
xⁿ eˣxⁿeˣ dx
xⁿ sin x / cos xxⁿsin/cos dx
xⁿ ln xln xxⁿ dx
xⁿ arctan/arcsinarctan/arcsinxⁿ dx
eˣ sin x / cos xeˣ or sin/cos(cycling)

35. Final Quick Reference

LIATE Priority:

L - Logarithmic | I - Inverse trig | A - Algebraic | T - Trig | E - Exponential

Cycling Integrals:

Apply parts twice, solve resulting equation for I

Key Takeaways

Formula

udv=uvvdu\int u\,dv = uv - \int v\,du

LIATE

Log, Inverse trig, Algebraic, Trig, Exponential

Tabular Method

For polynomial × exp/trig - derivatives & integrals in columns

Cycling

When I reappears: solve 2I = ... for I

  • Follow LIATE for choosing u
  • Use tabular method for polynomials
  • Watch for cycling integrals
  • Always verify by differentiating