Advanced techniques: partial fractions, trigonometric integrals, and reduction formulas.
For a proper rational function P(x)/Q(x) where Q(x) factors as:
Problem: Evaluate
Solution:
Factor:
Solving: A = 1/2, B = -1/2
Problem: Evaluate
Solution:
Solving: A = 1, B = 2
Problem: Evaluate
Solution:
The quadratic is irreducible. Use arctan formula:
Case 1: n odd
Save one sin x, convert rest to cos using sin²x = 1 - cos²x, substitute u = cos x
Case 2: m odd
Save one cos x, convert rest to sin using cos²x = 1 - sin²x, substitute u = sin x
Case 3: Both even
Use half-angle: sin²x = (1-cos 2x)/2, cos²x = (1+cos 2x)/2
Problem: Evaluate
Solution:
n = 3 is odd. Write
Let u = cos x, du = -sin x dx:
Problem: Evaluate
Solution:
Both powers even. Use half-angle:
Problem: Evaluate
Solution:
Use identity:
Let . Then:
This converts rational functions of sin x and cos x to rational functions of t.
Problem: Evaluate
Solution:
Let t = tan(x/2):
Back-substitute:
For sin^n x:
For cos^n x:
For tan^n x:
For sec^n x:
Problem: Evaluate
Solution:
Using the reduction formula twice:
Problem: Evaluate
Solution:
Complete the square:
Let u = x + 3:
Problem: Evaluate
Solution:
Note that d/dx(x²+4x+8) = 2x+4. Split: 2x+5 = (2x+4) + 1
First integral: ln|x²+4x+8|. Second: complete square (x+2)²+4
Problem:
Decompose:
Solving: A = 1/4, B = 3/2, C = -1/4
Problem:
Decompose:
Problem:
First divide: x³/(x²-1) = x + x/(x²-1)
Problem:
Use sin²x = (1-cos2x)/2 twice:
Problem:
Save cos x, convert sin³x:
Let u = cos x:
Problem:
Write tan⁴x = tan²x(sec²x - 1):
Problem:
Write sec⁴x = sec²x(1 + tan²x):
1.
2.
3.
4.
5.
Rational? Trig powers? Radicals? Choose method accordingly.
For partial fractions, factor the denominator fully first.
Know sin²x + cos²x = 1, half-angle formulas, etc.
Quick way to find coefficients for distinct linear factors.
Transforms ax²+bx+c into (x+p)²+q form.
Always differentiate to check your answer.
| Integrand | Method |
|---|---|
| P(x)/Q(x), deg P < deg Q | Partial fractions |
| sinᵐx cosⁿx (odd power) | Save one, convert rest |
| sinᵐx cosⁿx (both even) | Half-angle formulas |
| tanᵐx secⁿx | Strategic save + identity |
| 1/(a+b sin x), etc. | Weierstrass: t = tan(x/2) |
| 1/(ax²+bx+c) | Complete square → arctan |
Using Weierstrass t = tan(x/2):
Problem:
P1:
P2:
P3:
P4:
Problem:
Let u = x²+1:
Both powers even, use half-angle:
Save sec x tan x, convert tan⁴x = (sec²x-1)²:
C1:
Factor x⁴+1 = (x²+√2x+1)(x²-√2x+1)
C2:
Multiply by (1-sin x)/(1-sin x) or use Weierstrass
C3:
Write sec⁶x = sec⁴x·sec²x = (1+tan²x)²sec²x
F1:
F2:
F3:
Long divide first, then partial fractions
Use sin²x = (1-cos2x)/2 repeatedly:
Weierstrass: t = tan(x/2)
Problem:
M1:
Long divide first, factor x³-x = x(x-1)(x+1)
M2:
Save sin x, convert sin⁶x = (1-cos²x)³
M3:
Factor x⁴+4 = (x²+2x+2)(x²-2x+2)
Use cos²x = (1+cos2x)/2 repeatedly:
Factor: x⁴+x²+1 = (x²+x+1)(x²-x+1)
| Integrand Type | Recommended Method |
|---|---|
| Rational P(x)/Q(x) | Partial Fractions |
| sinᵐx cosⁿx (odd power) | Save one, convert rest |
| sinᵐx cosⁿx (both even) | Half-angle formulas |
| tanᵐx secⁿx | Strategic save + identity |
| R(sin x, cos x) | Weierstrass: t = tan(x/2) |
∫csc⁴x dx
∫1/(x³+1) dx
u = cos x, sin²x = 1-cos²x
Use half-angle repeatedly: sin²x = (1-cos2x)/2
A/(x-1) + B/(x-1)² + C/(x-1)³ + D/(x+2)
tan⁷x = tan⁵x(sec²x-1)
Let , then:
Use Weierstrass: t = tan(x/2)
Save sin x, convert sin²x = 1-cos²x
Partial fractions: A/(x-1) + (Bx+C)/(x²+4)
For rational functions P(x)/Q(x) where deg(P) < deg(Q) and Q can be factored. Factor Q into linear and irreducible quadratic factors.
First do polynomial long division to get a polynomial plus a proper fraction, then apply partial fractions to the fraction.
If n or m is odd, save one factor and convert rest using sin²+cos²=1. If both even, use half-angle formulas.
t = tan(x/2) gives: sin x = 2t/(1+t²), cos x = (1-t²)/(1+t²), dx = 2dt/(1+t²). Converts any rational trig to rational function.
When the denominator is an irreducible quadratic ax² + bx + c. Completing the square reveals the arctan or arcsin form.
Recurrence relations like ∫sin^n x dx = -sin^{n-1}x cos x/n + (n-1)/n ∫sin^{n-2}x dx that reduce power.
Factor denominator, decompose, integrate term by term
Odd power: save one, convert rest. Both even: half-angle
t = tan(x/2) for rational trig functions
For irreducible quadratics in denominator