MathIsimple
π
θ
Δ
ε
CALC-5.5
5-6 hours

Special Integrals

Advanced techniques: partial fractions, trigonometric integrals, and reduction formulas.

Learning Objectives
  • Decompose rational functions using partial fractions
  • Integrate products of sines and cosines
  • Apply Weierstrass substitution for rational trig functions
  • Use reduction formulas for powers of trig functions
  • Handle integrals with quadratic expressions

1. Partial Fractions

Theorem 5.16: Partial Fraction Decomposition

For a proper rational function P(x)/Q(x) where Q(x) factors as:

  • Distinct linear: (xa)(xb)Axa+Bxb(x-a)(x-b) \to \frac{A}{x-a} + \frac{B}{x-b}
  • Repeated linear: (xa)2Axa+B(xa)2(x-a)^2 \to \frac{A}{x-a} + \frac{B}{(x-a)^2}
  • Irreducible quadratic: (x2+bx+c)Ax+Bx2+bx+c(x^2+bx+c) \to \frac{Ax+B}{x^2+bx+c}
Example 5.50: Distinct Linear Factors

Problem: Evaluate 1x21dx\int \frac{1}{x^2-1}\,dx

Solution:

Factor: x21=(x1)(x+1)x^2-1 = (x-1)(x+1)

1(x1)(x+1)=Ax1+Bx+1\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}

Solving: A = 1/2, B = -1/2

1x21dx=12lnx112lnx+1+C=12lnx1x+1+C\int \frac{1}{x^2-1}\,dx = \frac{1}{2}\ln|x-1| - \frac{1}{2}\ln|x+1| + C = \frac{1}{2}\ln\left|\frac{x-1}{x+1}\right| + C
Example 5.51: Repeated Linear Factor

Problem: Evaluate x+3(x+1)2dx\int \frac{x+3}{(x+1)^2}\,dx

Solution:

x+3(x+1)2=Ax+1+B(x+1)2\frac{x+3}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}

Solving: A = 1, B = 2

(1x+1+2(x+1)2)dx=lnx+12x+1+C\int \left(\frac{1}{x+1} + \frac{2}{(x+1)^2}\right)\,dx = \ln|x+1| - \frac{2}{x+1} + C
Example 5.52: Irreducible Quadratic

Problem: Evaluate 1x2+4dx\int \frac{1}{x^2+4}\,dx

Solution:

The quadratic is irreducible. Use arctan formula:

1x2+4dx=12arctanx2+C\int \frac{1}{x^2+4}\,dx = \frac{1}{2}\arctan\frac{x}{2} + C

2. Trigonometric Integrals

Strategy for ∫sin^n x cos^m x dx

Case 1: n odd

Save one sin x, convert rest to cos using sin²x = 1 - cos²x, substitute u = cos x

Case 2: m odd

Save one cos x, convert rest to sin using cos²x = 1 - sin²x, substitute u = sin x

Case 3: Both even

Use half-angle: sin²x = (1-cos 2x)/2, cos²x = (1+cos 2x)/2

Example 5.53: sin³x dx

Problem: Evaluate sin3xdx\int \sin^3 x\,dx

Solution:

n = 3 is odd. Write sin3x=sinxsin2x=sinx(1cos2x)\sin^3 x = \sin x \cdot \sin^2 x = \sin x(1-\cos^2 x)

Let u = cos x, du = -sin x dx:

sinx(1cos2x)dx=(1u2)du=u+u33+C\int \sin x(1-\cos^2 x)\,dx = -\int (1-u^2)\,du = -u + \frac{u^3}{3} + C
=cosx+cos3x3+C= -\cos x + \frac{\cos^3 x}{3} + C
Example 5.54: sin²x dx

Problem: Evaluate sin2xdx\int \sin^2 x\,dx

Solution:

Both powers even. Use half-angle: sin2x=1cos2x2\sin^2 x = \frac{1-\cos 2x}{2}

1cos2x2dx=x2sin2x4+C\int \frac{1-\cos 2x}{2}\,dx = \frac{x}{2} - \frac{\sin 2x}{4} + C
Example 5.55: tan²x dx

Problem: Evaluate tan2xdx\int \tan^2 x\,dx

Solution:

Use identity: tan2x=sec2x1\tan^2 x = \sec^2 x - 1

(sec2x1)dx=tanxx+C\int (\sec^2 x - 1)\,dx = \tan x - x + C

3. Weierstrass Substitution

Theorem 5.17: Weierstrass Substitution

Let t=tanx2t = \tan\frac{x}{2}. Then:

sinx=2t1+t2\sin x = \frac{2t}{1+t^2}
cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2}
dx=2dt1+t2dx = \frac{2\,dt}{1+t^2}

This converts rational functions of sin x and cos x to rational functions of t.

Example 5.56: Weierstrass Application

Problem: Evaluate 11+sinxdx\int \frac{1}{1+\sin x}\,dx

Solution:

Let t = tan(x/2):

11+2t1+t221+t2dt=2(1+t)2dt=21+t+C\int \frac{1}{1+\frac{2t}{1+t^2}} \cdot \frac{2}{1+t^2}\,dt = \int \frac{2}{(1+t)^2}\,dt = -\frac{2}{1+t} + C

Back-substitute: =21+tan(x/2)+C= -\frac{2}{1+\tan(x/2)} + C

4. Reduction Formulas

Theorem 5.18: Common Reduction Formulas

For sin^n x:

sinnxdx=sinn1xcosxn+n1nsinn2xdx\int \sin^n x\,dx = -\frac{\sin^{n-1}x\cos x}{n} + \frac{n-1}{n}\int \sin^{n-2}x\,dx

For cos^n x:

cosnxdx=cosn1xsinxn+n1ncosn2xdx\int \cos^n x\,dx = \frac{\cos^{n-1}x\sin x}{n} + \frac{n-1}{n}\int \cos^{n-2}x\,dx

For tan^n x:

tannxdx=tann1xn1tann2xdx\int \tan^n x\,dx = \frac{\tan^{n-1}x}{n-1} - \int \tan^{n-2}x\,dx

For sec^n x:

secnxdx=secn2xtanxn1+n2n1secn2xdx\int \sec^n x\,dx = \frac{\sec^{n-2}x\tan x}{n-1} + \frac{n-2}{n-1}\int \sec^{n-2}x\,dx
Example 5.57: Using Reduction Formula

Problem: Evaluate sin4xdx\int \sin^4 x\,dx

Solution:

Using the reduction formula twice:

sin4xdx=sin3xcosx4+34sin2xdx\int \sin^4 x\,dx = -\frac{\sin^3 x \cos x}{4} + \frac{3}{4}\int \sin^2 x\,dx
=sin3xcosx4+34(x2sin2x4)+C= -\frac{\sin^3 x \cos x}{4} + \frac{3}{4}\left(\frac{x}{2} - \frac{\sin 2x}{4}\right) + C
=sin3xcosx4+3x83sin2x16+C= -\frac{\sin^3 x \cos x}{4} + \frac{3x}{8} - \frac{3\sin 2x}{16} + C

5. Completing the Square

Example 5.58: Completing the Square

Problem: Evaluate 1x2+6x+13dx\int \frac{1}{x^2+6x+13}\,dx

Solution:

Complete the square: x2+6x+13=(x+3)2+4x^2+6x+13 = (x+3)^2 + 4

Let u = x + 3:

1u2+4du=12arctanu2+C=12arctanx+32+C\int \frac{1}{u^2+4}\,du = \frac{1}{2}\arctan\frac{u}{2} + C = \frac{1}{2}\arctan\frac{x+3}{2} + C
Example 5.59: Splitting the Numerator

Problem: Evaluate 2x+5x2+4x+8dx\int \frac{2x+5}{x^2+4x+8}\,dx

Solution:

Note that d/dx(x²+4x+8) = 2x+4. Split: 2x+5 = (2x+4) + 1

2x+4x2+4x+8dx+1x2+4x+8dx\int \frac{2x+4}{x^2+4x+8}\,dx + \int \frac{1}{x^2+4x+8}\,dx

First integral: ln|x²+4x+8|. Second: complete square (x+2)²+4

=ln(x2+4x+8)+12arctanx+22+C= \ln(x^2+4x+8) + \frac{1}{2}\arctan\frac{x+2}{2} + C

6. More Partial Fraction Examples

Example 5.71: Repeated Linear Factors

Problem: x+2(x1)2(x+1)dx\int \frac{x+2}{(x-1)^2(x+1)}\,dx

Decompose: Ax1+B(x1)2+Cx+1\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}

Solving: A = 1/4, B = 3/2, C = -1/4

=14lnx132(x1)14lnx+1+C= \frac{1}{4}\ln|x-1| - \frac{3}{2(x-1)} - \frac{1}{4}\ln|x+1| + C
Example 5.72: Irreducible Quadratic

Problem: 2x+3(x2+1)(x2)dx\int \frac{2x+3}{(x^2+1)(x-2)}\,dx

Decompose: Ax+Bx2+1+Cx2\frac{Ax+B}{x^2+1} + \frac{C}{x-2}

=15ln(x2+1)15arctanx+75lnx2+C= \frac{1}{5}\ln(x^2+1) - \frac{1}{5}\arctan x + \frac{7}{5}\ln|x-2| + C
Example 5.73: Higher Degree Numerator

Problem: x3x21dx\int \frac{x^3}{x^2-1}\,dx

First divide: x³/(x²-1) = x + x/(x²-1)

=x22+12lnx21+C= \frac{x^2}{2} + \frac{1}{2}\ln|x^2-1| + C

7. More Trigonometric Integrals

Example 5.74: sin⁴x

Problem: sin4xdx\int \sin^4 x\,dx

Use sin²x = (1-cos2x)/2 twice:

sin4x=(1cos2x)24=12cos2x+cos22x4\sin^4 x = \frac{(1-\cos 2x)^2}{4} = \frac{1-2\cos 2x + \cos^2 2x}{4}
=3x8sin2x4+sin4x32+C= \frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C
Example 5.75: sin³x cos³x

Problem: sin3xcos3xdx\int \sin^3 x \cos^3 x\,dx

Save cos x, convert sin³x:

=(1cos2x)sinxcos3xdx= \int (1-\cos^2 x)\sin x \cos^3 x\,dx

Let u = cos x:

=cos4x4+cos6x6+C= -\frac{\cos^4 x}{4} + \frac{\cos^6 x}{6} + C
Example 5.76: tan⁴x

Problem: tan4xdx\int \tan^4 x\,dx

Write tan⁴x = tan²x(sec²x - 1):

=tan2xsec2xdxtan2xdx= \int \tan^2 x \sec^2 x\,dx - \int \tan^2 x\,dx
=tan3x3tanx+x+C= \frac{\tan^3 x}{3} - \tan x + x + C
Example 5.77: sec⁴x

Problem: sec4xdx\int \sec^4 x\,dx

Write sec⁴x = sec²x(1 + tan²x):

=sec2xdx+tan2xsec2xdx= \int \sec^2 x\,dx + \int \tan^2 x \sec^2 x\,dx
=tanx+tan3x3+C= \tan x + \frac{\tan^3 x}{3} + C

8. Practice Problems

1. 3x+5x24dx\int \frac{3x+5}{x^2-4}\,dx

Answer

114lnx2+14lnx+2+C\frac{11}{4}\ln|x-2| + \frac{1}{4}\ln|x+2| + C

2. sin5xdx\int \sin^5 x\,dx

Answer

cosx+2cos3x3cos5x5+C-\cos x + \frac{2\cos^3 x}{3} - \frac{\cos^5 x}{5} + C

3. 1x2+6x+13dx\int \frac{1}{x^2+6x+13}\,dx

Answer

12arctanx+32+C\frac{1}{2}\arctan\frac{x+3}{2} + C

4. cos4xdx\int \cos^4 x\,dx

Answer

3x8+sin2x4+sin4x32+C\frac{3x}{8} + \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C

5. x2+1x3+xdx\int \frac{x^2+1}{x^3+x}\,dx

Answer

lnx+arctanx+C\ln|x| + \arctan x + C

9. Study Tips

1. Identify Type First

Rational? Trig powers? Radicals? Choose method accordingly.

2. Factor Completely

For partial fractions, factor the denominator fully first.

3. Trig Identities

Know sin²x + cos²x = 1, half-angle formulas, etc.

4. Cover-up Method

Quick way to find coefficients for distinct linear factors.

5. Complete Square

Transforms ax²+bx+c into (x+p)²+q form.

6. Verify

Always differentiate to check your answer.

10. Formula Summary

IntegrandMethod
P(x)/Q(x), deg P < deg QPartial fractions
sinᵐx cosⁿx (odd power)Save one, convert rest
sinᵐx cosⁿx (both even)Half-angle formulas
tanᵐx secⁿxStrategic save + identity
1/(a+b sin x), etc.Weierstrass: t = tan(x/2)
1/(ax²+bx+c)Complete square → arctan

11. More Worked Examples

Example 5.78: cot⁴x
cot4xdx=(csc2x1)cot2xdx\int \cot^4 x\,dx = \int (\csc^2 x - 1)\cot^2 x\,dx
=cot3x3cotxx+C= -\frac{\cot^3 x}{3} - \cot x - x + C
Example 5.79: 1/(sin x + cos x)

Using Weierstrass t = tan(x/2):

1sinx+cosxdx=12lntanx2+12+C\int \frac{1}{\sin x + \cos x}\,dx = \frac{1}{\sqrt{2}}\ln\left|\tan\frac{x}{2} + 1 - \sqrt{2}\right| + C
Example 5.80: Complex Partial Fractions

Problem: 2x2+x+1(x+1)(x2+1)dx\int \frac{2x^2+x+1}{(x+1)(x^2+1)}\,dx

=lnx+1+12ln(x2+1)+C= \ln|x+1| + \frac{1}{2}\ln(x^2+1) + C

12. Final Practice Set

P1: x(x+1)(x+2)dx\int \frac{x}{(x+1)(x+2)}\,dx

Answer

lnx+1+2lnx+2+C-\ln|x+1| + 2\ln|x+2| + C

P2: sin2xcos4xdx\int \sin^2 x \cos^4 x\,dx

Answer

x16sin4x64+sin32x48+C\frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48} + C

P3: tan3xsecxdx\int \tan^3 x \sec x\,dx

Answer

sec3x3secx+C\frac{\sec^3 x}{3} - \sec x + C

P4: 1(x2+4)2dx\int \frac{1}{(x^2+4)^2}\,dx

Answer

x8(x2+4)+arctan(x/2)16+C\frac{x}{8(x^2+4)} + \frac{\arctan(x/2)}{16} + C

13. Chapter Summary

Partial Fractions

  • • Linear: A/(ax+b)
  • • Repeated: A/(ax+b) + B/(ax+b)²
  • • Irreducible: (Ax+B)/(ax²+bx+c)

Trig Integrals

  • • Odd power: save one, use identity
  • • Both even: half-angle formulas
  • • tan/sec: strategic approach

14. More Worked Examples

Example 5.81: csc⁴x
csc4xdx=cotxcot3x3+C\int \csc^4 x\,dx = -\cot x - \frac{\cot^3 x}{3} + C
Example 5.82: Repeated Irreducible Quadratic

Problem: x(x2+1)2dx\int \frac{x}{(x^2+1)^2}\,dx

Let u = x²+1:

=12(x2+1)+C= -\frac{1}{2(x^2+1)} + C
Example 5.83: sin²x cos⁴x

Both powers even, use half-angle:

sin2xcos4xdx=x16sin4x64+sin32x48+C\int \sin^2 x \cos^4 x\,dx = \frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48} + C
Example 5.84: tan⁵x sec³x

Save sec x tan x, convert tan⁴x = (sec²x-1)²:

=sec7x72sec5x5+sec3x3+C= \frac{\sec^7 x}{7} - \frac{2\sec^5 x}{5} + \frac{\sec^3 x}{3} + C

15. Challenge Problems

C1: 1x4+1dx\int \frac{1}{x^4+1}\,dx

Hint

Factor x⁴+1 = (x²+√2x+1)(x²-√2x+1)

C2: sinx1+sinxdx\int \frac{\sin x}{1+\sin x}\,dx

Hint

Multiply by (1-sin x)/(1-sin x) or use Weierstrass

C3: sec6xdx\int \sec^6 x\,dx

Hint

Write sec⁶x = sec⁴x·sec²x = (1+tan²x)²sec²x

16. Quick Reference Card

Partial Fractions

  • • Long divide if deg(P) ≥ deg(Q)
  • • Factor Q(x) completely
  • • Cover-up for distinct linear

Trig Powers

  • • sinᵐx cosⁿx: save odd
  • • Both even: half-angle
  • • tanᵐx secⁿx: strategic

Special

  • • Weierstrass: t = tan(x/2)
  • • Complete square for ax²+bx+c
  • • Always verify!

17. Additional Practice

x21x4+x2+1dx\int \frac{x^2-1}{x^4+x^2+1}\,dx

Answer

arctanx2+1x+C\arctan\frac{x^2+1}{x} + C

sin3xcos5xdx\int \sin^3 x \cos^5 x\,dx

Answer

cos6x6+cos8x8+C-\frac{\cos^6 x}{6} + \frac{\cos^8 x}{8} + C

x+1x2(x1)dx\int \frac{x+1}{x^2(x-1)}\,dx

Answer

1x+lnx1+C-\frac{1}{x} + \ln|x-1| + C

tan2xsec4xdx\int \tan^2 x \sec^4 x\,dx

Answer

tan3x3+tan5x5+C\frac{\tan^3 x}{3} + \frac{\tan^5 x}{5} + C

18. Important Results

1x2+a2dx=1aarctanxa+C\int \frac{1}{x^2+a^2}\,dx = \frac{1}{a}\arctan\frac{x}{a} + C
1x2a2dx=12alnxax+a+C\int \frac{1}{x^2-a^2}\,dx = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| + C
1a2x2dx=arcsinxa+C\int \frac{1}{\sqrt{a^2-x^2}}\,dx = \arcsin\frac{x}{a} + C
1x2±a2dx=lnx+x2±a2+C\int \frac{1}{\sqrt{x^2 \pm a^2}}\,dx = \ln|x + \sqrt{x^2 \pm a^2}| + C

19. Final Practice Set

F1: 2x+3x2+3x+2dx\int \frac{2x+3}{x^2+3x+2}\,dx

Answer

lnx+1+lnx+2+C\ln|x+1| + \ln|x+2| + C

F2: cot3xcscxdx\int \cot^3 x \csc x\,dx

Answer

csc3x3+cscx+C-\frac{\csc^3 x}{3} + \csc x + C

F3: x3+2x2+x+1dx\int \frac{x^3+2}{x^2+x+1}\,dx

Hint

Long divide first, then partial fractions

20. Additional Worked Examples

Example 5.85: sin⁶x

Use sin²x = (1-cos2x)/2 repeatedly:

sin6xdx=5x1615sin2x64+3sin4x64sin6x192+C\int \sin^6 x\,dx = \frac{5x}{16} - \frac{15\sin 2x}{64} + \frac{3\sin 4x}{64} - \frac{\sin 6x}{192} + C
Example 5.86: 1/(1+sin x+cos x)

Weierstrass: t = tan(x/2)

11+sinx+cosxdx=ln1+tan(x/2)+C\int \frac{1}{1+\sin x+\cos x}\,dx = \ln|1+\tan(x/2)| + C
Example 5.87: Complex Partial Fraction

Problem: x2+1(x1)2(x+2)dx\int \frac{x^2+1}{(x-1)^2(x+2)}\,dx

=29lnx123(x1)+59lnx+2+C= \frac{2}{9}\ln|x-1| - \frac{2}{3(x-1)} + \frac{5}{9}\ln|x+2| + C

21. More Practice Problems

x2(x+1)(x2+4)dx\int \frac{x^2}{(x+1)(x^2+4)}\,dx

Answer

15lnx+1+25ln(x2+4)15arctanx2+C\frac{1}{5}\ln|x+1| + \frac{2}{5}\ln(x^2+4) - \frac{1}{5}\arctan\frac{x}{2} + C

sin4xcos2xdx\int \sin^4 x \cos^2 x\,dx

Answer

x16sin4x64sin32x48+C\frac{x}{16} - \frac{\sin 4x}{64} - \frac{\sin^3 2x}{48} + C

1sinxcosxdx\int \frac{1}{\sin x - \cos x}\,dx

Answer

12lncsc(x+π/4)+cot(x+π/4)+C-\frac{1}{\sqrt{2}}\ln|\csc(x+\pi/4) + \cot(x+\pi/4)| + C

cot5xdx\int \cot^5 x\,dx

Answer

cot4x4+cot2x2+lnsinx+C-\frac{\cot^4 x}{4} + \frac{\cot^2 x}{2} + \ln|\sin x| + C

22. Final Chapter Summary

Partial Fractions

  • • Factor denominator
  • • Decompose to simpler terms
  • • Integrate each separately

Trig Powers

  • • Odd: save one, convert
  • • Even: half-angle
  • • tan/sec: strategic

Special Methods

  • • Weierstrass for rational trig
  • • Complete square for quadratics
  • • Always verify answers

23. Even More Examples

1(x2+1)2dx=x2(x2+1)+12arctanx+C\int \frac{1}{(x^2+1)^2}\,dx = \frac{x}{2(x^2+1)} + \frac{1}{2}\arctan x + C
tan6xdx=tan5x5tan3x3+tanxx+C\int \tan^6 x\,dx = \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} + \tan x - x + C
1x31dx=13lnx116ln(x2+x+1)33arctan2x+13+C\int \frac{1}{x^3-1}\,dx = \frac{1}{3}\ln|x-1| - \frac{1}{6}\ln(x^2+x+1) - \frac{\sqrt{3}}{3}\arctan\frac{2x+1}{\sqrt{3}} + C
sec5xdx=sec3xtanx4+3secxtanx8+38lnsecx+tanx+C\int \sec^5 x\,dx = \frac{\sec^3 x\tan x}{4} + \frac{3\sec x\tan x}{8} + \frac{3}{8}\ln|\sec x+\tan x| + C

24. More Practice Problems

M1: x3+1x3xdx\int \frac{x^3+1}{x^3-x}\,dx

Hint

Long divide first, factor x³-x = x(x-1)(x+1)

M2: sin7xdx\int \sin^7 x\,dx

Hint

Save sin x, convert sin⁶x = (1-cos²x)³

M3: 1x4+4dx\int \frac{1}{x^4+4}\,dx

Hint

Factor x⁴+4 = (x²+2x+2)(x²-2x+2)

25. Final Worked Examples

Example 5.88: cos⁶x

Use cos²x = (1+cos2x)/2 repeatedly:

cos6xdx=5x16+15sin2x64+3sin4x64+sin6x192+C\int \cos^6 x\,dx = \frac{5x}{16} + \frac{15\sin 2x}{64} + \frac{3\sin 4x}{64} + \frac{\sin 6x}{192} + C
Example 5.89: 1/(x⁴+x²+1)

Factor: x⁴+x²+1 = (x²+x+1)(x²-x+1)

1x4+x2+1dx=123arctan2x+13+123arctan2x13+C\int \frac{1}{x^4+x^2+1}\,dx = \frac{1}{2\sqrt{3}}\arctan\frac{2x+1}{\sqrt{3}} + \frac{1}{2\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}} + C

26. Method Selection Guide

Integrand TypeRecommended Method
Rational P(x)/Q(x)Partial Fractions
sinᵐx cosⁿx (odd power)Save one, convert rest
sinᵐx cosⁿx (both even)Half-angle formulas
tanᵐx secⁿxStrategic save + identity
R(sin x, cos x)Weierstrass: t = tan(x/2)

27. Final Examples

∫csc⁴x dx

=cotxcot3x3+C= -\cot x - \frac{\cot^3 x}{3} + C

∫1/(x³+1) dx

=13lnx+116ln(x2x+1)+33arctan2x13+C= \frac{1}{3}\ln|x+1| - \frac{1}{6}\ln(x^2-x+1) + \frac{\sqrt{3}}{3}\arctan\frac{2x-1}{\sqrt{3}} + C

28. Additional Practice Problems

x41x2(x2+1)dx\int \frac{x^4-1}{x^2(x^2+1)}\,dx

Answer

x+1x2arctanx+Cx + \frac{1}{x} - 2\arctan x + C

tan5xdx\int \tan^5 x\,dx

Answer

tan4x4tan2x2lncosx+C\frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} - \ln|\cos x| + C

11cosxdx\int \frac{1}{1-\cos x}\,dx

Answer

cot(x/2)+C-\cot(x/2) + C

sin3x1+cos2xdx\int \frac{\sin^3 x}{1+\cos^2 x}\,dx

Hint

u = cos x, sin²x = 1-cos²x

29. Additional Results

tannxdx=tann1xn1tann2xdx\int \tan^n x\,dx = \frac{\tan^{n-1}x}{n-1} - \int \tan^{n-2}x\,dx
cotnxdx=cotn1xn1cotn2xdx\int \cot^n x\,dx = -\frac{\cot^{n-1}x}{n-1} - \int \cot^{n-2}x\,dx
cscnxdx=cscn2xcotxn1+n2n1cscn2xdx\int \csc^n x\,dx = -\frac{\csc^{n-2}x\cot x}{n-1} + \frac{n-2}{n-1}\int \csc^{n-2}x\,dx
1(x2+a2)ndx=x2(n1)a2(x2+a2)n1+2n32(n1)a2dx(x2+a2)n1\int \frac{1}{(x^2+a^2)^n}\,dx = \frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2}\int \frac{dx}{(x^2+a^2)^{n-1}}

30. Final Chapter Summary

Partial Fractions

  • • Factor denominator
  • • Decompose
  • • Integrate each part

Trig Powers

  • • Odd: save one
  • • Even: half-angle
  • • tan/sec: strategic

Special Methods

  • • Weierstrass
  • • Complete square
  • • Reduction formulas

31. Final Practice Set

x3x41dx\int \frac{x^3}{x^4-1}\,dx

Answer

14lnx41+C\frac{1}{4}\ln|x^4-1| + C

sin8xdx\int \sin^8 x\,dx

Hint

Use half-angle repeatedly: sin²x = (1-cos2x)/2

1(x1)3(x+2)dx\int \frac{1}{(x-1)^3(x+2)}\,dx

Hint

A/(x-1) + B/(x-1)² + C/(x-1)³ + D/(x+2)

tan7xdx\int \tan^7 x\,dx

Hint

tan⁷x = tan⁵x(sec²x-1)

32. Important Trig Identities

sin2x=1cos2x2\sin^2 x = \frac{1-\cos 2x}{2}

cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2}

tan2x=sec2x1\tan^2 x = \sec^2 x - 1

cot2x=csc2x1\cot^2 x = \csc^2 x - 1

33. Weierstrass Substitution Reference

Let t=tan(x/2)t = \tan(x/2), then:

sinx=2t1+t2\sin x = \frac{2t}{1+t^2}
cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2}
tanx=2t1t2\tan x = \frac{2t}{1-t^2}
dx=21+t2dtdx = \frac{2}{1+t^2}\,dt

34. Final Exercises

12+sinxdx\int \frac{1}{2+\sin x}\,dx

Hint

Use Weierstrass: t = tan(x/2)

sin3xcos4xdx\int \sin^3 x \cos^4 x\,dx

Hint

Save sin x, convert sin²x = 1-cos²x

x2+3x2(x1)(x2+4)dx\int \frac{x^2+3x-2}{(x-1)(x^2+4)}\,dx

Hint

Partial fractions: A/(x-1) + (Bx+C)/(x²+4)

sec3xdx\int \sec^3 x\,dx

Answer

12secxtanx+12lnsecx+tanx+C\frac{1}{2}\sec x\tan x + \frac{1}{2}\ln|\sec x+\tan x| + C

Special Integrals Quiz
8
Questions
0
Correct
0%
Accuracy
1
1(x1)(x+2)dx\int \frac{1}{(x-1)(x+2)}\,dx partial fractions gives:
Medium
Not attempted
2
sin2xdx=\int \sin^2 x\,dx =
Easy
Not attempted
3
sin3xdx\int \sin^3 x\,dx uses:
Medium
Not attempted
4
The Weierstrass substitution is:
Hard
Not attempted
5
tan2xdx=\int \tan^2 x\,dx =
Medium
Not attempted
6
For 2x+3x2+x+1dx\int \frac{2x+3}{x^2+x+1}\,dx:
Hard
Not attempted
7
sec3xdx\int \sec^3 x\,dx requires:
Hard
Not attempted
8
1x2+2x+5dx\int \frac{1}{x^2+2x+5}\,dx first step:
Medium
Not attempted

Frequently Asked Questions

When do I use partial fractions?

For rational functions P(x)/Q(x) where deg(P) < deg(Q) and Q can be factored. Factor Q into linear and irreducible quadratic factors.

What if degree of numerator ≥ denominator?

First do polynomial long division to get a polynomial plus a proper fraction, then apply partial fractions to the fraction.

How do I integrate sin^n x cos^m x?

If n or m is odd, save one factor and convert rest using sin²+cos²=1. If both even, use half-angle formulas.

What is the Weierstrass substitution?

t = tan(x/2) gives: sin x = 2t/(1+t²), cos x = (1-t²)/(1+t²), dx = 2dt/(1+t²). Converts any rational trig to rational function.

When do I complete the square?

When the denominator is an irreducible quadratic ax² + bx + c. Completing the square reveals the arctan or arcsin form.

What are reduction formulas?

Recurrence relations like ∫sin^n x dx = -sin^{n-1}x cos x/n + (n-1)/n ∫sin^{n-2}x dx that reduce power.

Key Takeaways

Partial Fractions

Factor denominator, decompose, integrate term by term

Trig Powers

Odd power: save one, convert rest. Both even: half-angle

Weierstrass

t = tan(x/2) for rational trig functions

Complete Square

For irreducible quadratics in denominator

  • Identify the integral type first
  • Factor denominators completely
  • Know your trig identities
  • Always verify by differentiating