MathIsimple
CALC-2.2
3-4 Hours

Properties and Operations of Limits

Core Theorems
4 Sections
Fundamental for Analysis
Learning Objectives
By the end of this course, you will be able to:
  • Prove and apply the uniqueness of limits theorem
  • Understand the relationship between convergence and boundedness
  • Apply the sign preservation property in proofs
  • Master arithmetic operations on convergent sequences
  • Understand the order preservation property and its limitations
  • Apply absolute value properties to limits

Section 1: Basic Properties

Theorem 2.1: Uniqueness of Limits

If a sequence converges, then its limit is unique.

Proof of Theorem 2.1:

Suppose limnxn=a\lim_{n \to \infty} x_n = a and limnxn=b\lim_{n \to \infty} x_n = b with aba \neq b.

Let ϵ=ab2>0\epsilon = \frac{|a-b|}{2} > 0.

By definition:

  • N1\exists N_1: n>N1xna<ϵn > N_1 \Rightarrow |x_n - a| < \epsilon
  • N2\exists N_2: n>N2xnb<ϵn > N_2 \Rightarrow |x_n - b| < \epsilon

For n>max{N1,N2}n > \max\{N_1, N_2\}:

ab=axn+xnbaxn+xnb<2ϵ=ab|a - b| = |a - x_n + x_n - b| \leq |a - x_n| + |x_n - b| < 2\epsilon = |a - b|

This gives ab<ab|a - b| < |a - b|, a contradiction. Therefore a=ba = b.

Theorem 2.2: Boundedness of Convergent Sequences

If {xn}\{x_n\} converges, then {xn}\{x_n\} is bounded.

Proof of Theorem 2.2:

Let limnxn=L\lim_{n \to \infty} x_n = L. Take ϵ=1\epsilon = 1.

N\exists N: n>NxnL<1xn<L+1n > N \Rightarrow |x_n - L| < 1 \Rightarrow |x_n| < |L| + 1

Let M=max{x1,x2,,xN,L+1}M = \max\{|x_1|, |x_2|, \ldots, |x_N|, |L| + 1\}.

Then xnM|x_n| \leq M for all nn.

Remark 2.1: Converse is False

The converse is FALSE. {(1)n}\{(-1)^n\} is bounded (all terms between -1 and 1) but divergent because it oscillates forever.

Theorem 2.3: Sign Preservation

If limnxn=a>0\lim_{n \to \infty} x_n = a > 0, then N\exists N such that for n>Nn > N: xn>a2>0x_n > \frac{a}{2} > 0.

Proof of Theorem 2.3:

Take ϵ=a2>0\epsilon = \frac{a}{2} > 0. Then N\exists N: n>Nxna<a2n > N \Rightarrow |x_n - a| < \frac{a}{2}

aa2<xn<a+a2xn>a2>0\Rightarrow a - \frac{a}{2} < x_n < a + \frac{a}{2} \Rightarrow x_n > \frac{a}{2} > 0
Corollary 2.1: Non-negative Limit

If xn0x_n \geq 0 for all nn and limnxn=a\lim_{n \to \infty} x_n = a, then a0a \geq 0.

Example 2.1: Sign Preservation Application

Problem: Show that if limxn=3\lim x_n = 3, then xn>1x_n > 1 for sufficiently large nn.

Solution:

By sign preservation with a=3>0a = 3 > 0, there exists NN such that for n>Nn > N:

xn>32=1.5>1x_n > \frac{3}{2} = 1.5 > 1

Section 2: Arithmetic Operations

Theorem 2.4: Limit Laws

Let limnxn=a\lim_{n \to \infty} x_n = a and limnyn=b\lim_{n \to \infty} y_n = b. Then:

OperationResultCondition
Sum/Differencelimn(xn±yn)=a±b\lim_{n \to \infty} (x_n \pm y_n) = a \pm bNone
Productlimn(xnyn)=ab\lim_{n \to \infty} (x_n \cdot y_n) = a \cdot bNone
Scalar Multiplelimn(cxn)=ca\lim_{n \to \infty} (c \cdot x_n) = c \cdot ac ∈ ℝ
Quotientlimnxnyn=ab\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}b ≠ 0, yₙ ≠ 0
Powerlimnxnk=ak\lim_{n \to \infty} x_n^k = a^kk ∈ ℕ
Proof of Product Rule:

We show lim(xnyn)=ab\lim(x_n y_n) = ab.

xnynab=xnynxnb+xnbabxnynb+bxna|x_n y_n - ab| = |x_n y_n - x_n b + x_n b - ab| \leq |x_n||y_n - b| + |b||x_n - a|

Since {xn}\{x_n\} is convergent, it is bounded: xnM|x_n| \leq M for some M>0M > 0.

Given ϵ>0\epsilon > 0, choose NN such that for n>Nn > N:

  • xna<ϵ2(b+1)|x_n - a| < \frac{\epsilon}{2(|b|+1)}
  • ynb<ϵ2M|y_n - b| < \frac{\epsilon}{2M}

Then xnynab<Mϵ2M+bϵ2(b+1)<ϵ|x_n y_n - ab| < M \cdot \frac{\epsilon}{2M} + |b| \cdot \frac{\epsilon}{2(|b|+1)} < \epsilon.

Remark 2.2: Indeterminate Forms

These laws require BOTH sequences to converge. For indeterminate forms like:

  • \infty - \infty
  • 00 \cdot \infty
  • 00\frac{0}{0} or \frac{\infty}{\infty}

Further analysis is needed (covered in CALC-2.3: Stolz theorem).

Example 2.2: Applying Limit Laws

Problem: Find limn3n2+2n12n2n+5\lim_{n \to \infty} \frac{3n^2 + 2n - 1}{2n^2 - n + 5}.

Solution:

Divide numerator and denominator by n2n^2:

limn3+2n1n221n+5n2\lim_{n \to \infty} \frac{3 + \frac{2}{n} - \frac{1}{n^2}}{2 - \frac{1}{n} + \frac{5}{n^2}}

Using limit laws (sum, quotient, and lim1nk=0\lim \frac{1}{n^k} = 0):

=3+0020+0=32= \frac{3 + 0 - 0}{2 - 0 + 0} = \frac{3}{2}
Example 2.3: Product of Bounded and Infinitesimal

Problem: Find limnsinnn\lim_{n \to \infty} \frac{\sin n}{n}.

Solution:

We have sinn1|\sin n| \leq 1 (bounded) and 1n0\frac{1}{n} \to 0 (infinitesimal).

sinnn=sinnn1n0\left|\frac{\sin n}{n}\right| = \frac{|\sin n|}{n} \leq \frac{1}{n} \to 0

By the domination principle: limnsinnn=0\lim_{n \to \infty} \frac{\sin n}{n} = 0.

Example 2.4: Limit of Products

Problem: If limxn=2\lim x_n = 2 and limyn=3\lim y_n = 3, find lim(xn2yn2)\lim (x_n^2 - y_n^2).

Solution:

Using the power rule and sum rule:

lim(xn2yn2)=(limxn)2(limyn)2=2232=49=5\lim (x_n^2 - y_n^2) = (\lim x_n)^2 - (\lim y_n)^2 = 2^2 - 3^2 = 4 - 9 = -5
Theorem 2.5: Quotient Rule (Detailed)

If limxn=a\lim x_n = a and limyn=b0\lim y_n = b \neq 0, then limxnyn=ab\lim \frac{x_n}{y_n} = \frac{a}{b}.

Proof of Theorem 2.5:

Step 1: By sign preservation, since b0b \neq 0, there exists N1N_1 such that yn>b2|y_n| > \frac{|b|}{2} for n>N1n > N_1.

Step 2: Estimate the difference:

xnynab=bxnaynbyn=b(xna)+a(byn)byn\left|\frac{x_n}{y_n} - \frac{a}{b}\right| = \left|\frac{bx_n - ay_n}{by_n}\right| = \frac{|b(x_n - a) + a(b - y_n)|}{|b||y_n|}

Step 3: Using triangle inequality and yn>b2|y_n| > \frac{|b|}{2}:

bxna+aynbbb2=2xnab+2aynbb2\leq \frac{|b||x_n - a| + |a||y_n - b|}{|b| \cdot \frac{|b|}{2}} = \frac{2|x_n - a|}{|b|} + \frac{2|a||y_n - b|}{|b|^2}

Both terms can be made arbitrarily small for large nn.

Corollary 2.2: Reciprocal Rule

If limyn=b0\lim y_n = b \neq 0, then lim1yn=1b\lim \frac{1}{y_n} = \frac{1}{b}.

Remark 2.3: Standard Limits to Remember

The following limits are fundamental and should be memorized:

limn1nα=0(α>0)\lim_{n \to \infty} \frac{1}{n^\alpha} = 0 \quad (\alpha > 0)
limnqn=0(q<1)\lim_{n \to \infty} q^n = 0 \quad (|q| < 1)
limnnn=1\lim_{n \to \infty} \sqrt[n]{n} = 1
limnan=1(a>0)\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad (a > 0)
Common Mistakes to Avoid

❌ Don't apply limit laws to divergent sequences

lim(nn)limnlimn\lim(n - n) \neq \lim n - \lim n (the right side is undefined)

❌ Don't divide when the denominator's limit is zero

The quotient rule requires b0b \neq 0

✓ Always verify convergence first

Before using any limit law, ensure all sequences involved converge

Section 3: Order Preservation

Theorem 2.5: Order Preservation

If {xn}\{x_n\} and {yn}\{y_n\} both converge, and N0\exists N_0 such that xnynx_n \leq y_n for all n>N0n > N_0, then:

limnxnlimnyn\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n
Critical Note: Strict Inequalities

Even if xn<ynx_n < y_n for ALL nn, the limits may be EQUAL.

Counterexample:

Let xn=11nx_n = 1 - \frac{1}{n} and yn=1y_n = 1.

  • xn<ynx_n < y_n for all nn
  • But limxn=1=limyn\lim x_n = 1 = \lim y_n
Example 2.3: Order Preservation in Practice

Problem: If 0<xn<1n0 < x_n < \frac{1}{n} for all nn, what is limxn\lim x_n?

Solution:

We have 0<xn<1n0 < x_n < \frac{1}{n}. Taking limits:

  • lim0=0\lim 0 = 0
  • lim1n=0\lim \frac{1}{n} = 0

By order preservation: 0limxn00 \leq \lim x_n \leq 0, so limxn=0\lim x_n = 0.

(This is actually the Squeeze Theorem, covered in CALC-2.3)

Section 4: Absolute Value Property

Theorem 2.6: Limit Implies Absolute Value Limit

If limnxn=a\lim_{n \to \infty} x_n = a, then limnxn=a\lim_{n \to \infty} |x_n| = |a|.

Proof of Theorem 2.6:

By the reverse triangle inequality: xnaxna\big||x_n| - |a|\big| \leq |x_n - a|

Given ϵ>0\epsilon > 0, choose NN such that xna<ϵ|x_n - a| < \epsilon for n>Nn > N.

Then xna<ϵ\big||x_n| - |a|\big| < \epsilon.

Remark 2.3: Converse is False

The CONVERSE is FALSE!

Counterexample: xn=(1)nx_n = (-1)^n

  • xn=11|x_n| = 1 \to 1 (converges)
  • xnx_n diverges (oscillates between -1 and 1)
Theorem 2.7: Zero Limit Equivalence
limnxn=0limnxn=0\lim_{n \to \infty} x_n = 0 \Leftrightarrow \lim_{n \to \infty} |x_n| = 0

This equivalence holds ONLY for zero limits.

Proof of Theorem 2.7:

(⟹) Follows from Theorem 2.6 with a=0a = 0, giving a=0|a| = 0.

(⟸) If xn0|x_n| \to 0, then for any ϵ>0\epsilon > 0, N\exists N: n>Nxn<ϵn > N \Rightarrow |x_n| < \epsilon.

But xn0=xn|x_n - 0| = |x_n|, so xn0x_n \to 0.

Example 2.4: Using Absolute Value Properties

Problem: If limxn=5\lim x_n = -5, find limxn\lim |x_n| and limxn2\lim x_n^2.

Solution:

By Theorem 2.6: limxn=5=5\lim |x_n| = |-5| = 5

By the power rule (Theorem 2.4): limxn2=(5)2=25\lim x_n^2 = (-5)^2 = 25

Section 5: Advanced Techniques

Theorem 2.8: Sandwich Principle for Products

If {xn}\{x_n\} is bounded and limnyn=0\lim_{n \to \infty} y_n = 0, then:

limnxnyn=0\lim_{n \to \infty} x_n y_n = 0
Proof of Theorem 2.8:

Since {xn}\{x_n\} is bounded, M>0\exists M > 0 such that xnM|x_n| \leq M for all nn.

Given ϵ>0\epsilon > 0, since yn0y_n \to 0, N\exists N such that yn<ϵM|y_n| < \frac{\epsilon}{M} for n>Nn > N.

Then xnyn=xnynMϵM=ϵ|x_n y_n| = |x_n||y_n| \leq M \cdot \frac{\epsilon}{M} = \epsilon.

Example 2.5: Bounded Times Infinitesimal

Problem: Find limncosnn\lim_{n \to \infty} \frac{\cos n}{n}.

Solution:

We have cosn1|\cos n| \leq 1 (bounded) and 1n0\frac{1}{n} \to 0 (infinitesimal).

By Theorem 2.8: limncosnn=0\lim_{n \to \infty} \frac{\cos n}{n} = 0.

Theorem 2.9: Root Limit

If limnxn=a>0\lim_{n \to \infty} x_n = a > 0 and kNk \in \mathbb{N}, then:

limnxnk=ak\lim_{n \to \infty} \sqrt[k]{x_n} = \sqrt[k]{a}
Proof of Theorem 2.9:

Let f(x)=x1/kf(x) = x^{1/k} for x>0x > 0. Using the factorization:

x1/ka1/k=xax(k1)/k+x(k2)/ka1/k++a(k1)/kx^{1/k} - a^{1/k} = \frac{x - a}{x^{(k-1)/k} + x^{(k-2)/k}a^{1/k} + \cdots + a^{(k-1)/k}}

Since xna>0x_n \to a > 0, the denominator is bounded away from 0 for large nn.

As xna0x_n - a \to 0, we get xn1/ka1/k0x_n^{1/k} - a^{1/k} \to 0.

Example 2.6: Combining Multiple Rules

Problem: Find limnn2+3n4n2+1\lim_{n \to \infty} \sqrt{\frac{n^2 + 3n}{4n^2 + 1}}.

Solution:

First, find the limit inside the root:

limnn2+3n4n2+1=limn1+3n4+1n2=14\lim_{n \to \infty} \frac{n^2 + 3n}{4n^2 + 1} = \lim_{n \to \infty} \frac{1 + \frac{3}{n}}{4 + \frac{1}{n^2}} = \frac{1}{4}

By Theorem 2.9 (root limit):

limnn2+3n4n2+1=14=12\lim_{n \to \infty} \sqrt{\frac{n^2 + 3n}{4n^2 + 1}} = \sqrt{\frac{1}{4}} = \frac{1}{2}
Example 2.7: Complex Expression

Problem: Find limn(n2+nn)\lim_{n \to \infty} \left(\sqrt{n^2 + n} - n\right).

Solution:

Rationalize by multiplying by the conjugate:

n2+nn=(n2+n)n2n2+n+n=nn2+n+n\sqrt{n^2 + n} - n = \frac{(n^2 + n) - n^2}{\sqrt{n^2 + n} + n} = \frac{n}{\sqrt{n^2 + n} + n}

Divide by nn:

=11+1n+111+1=12= \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} \to \frac{1}{\sqrt{1} + 1} = \frac{1}{2}
Strategy Guide: When to Use Each Theorem
Rational Functions

Divide by highest power of nn, then apply sum/quotient rules

Expressions with Roots

Rationalize (multiply by conjugate), or use root limit theorem

Oscillating × Decaying

Use bounded × infinitesimal principle (Theorem 2.8)

Products and Quotients

Verify convergence first, then apply product/quotient rules

Remark 2.4: Hierarchy of Growth Rates

The following growth comparison is fundamental (from slowest to fastest):

lnnnαann!nn(α>0,a>1)\ln n \ll n^\alpha \ll a^n \ll n! \ll n^n \quad (\alpha > 0, a > 1)

Here f(n)g(n)f(n) \ll g(n) means limnf(n)g(n)=0\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.

Example 2.8: Growth Rate Comparison

Problem: Find limnn1001.01n\lim_{n \to \infty} \frac{n^{100}}{1.01^n}.

Solution:

By the growth hierarchy, polynomial \ll exponential.

Since 1.01>11.01 > 1, the exponential 1.01n1.01^n dominates any polynomial n100n^{100}.

Therefore: limnn1001.01n=0\lim_{n \to \infty} \frac{n^{100}}{1.01^n} = 0.

Section 6: Worked Examples

Example 2.9: Limit of Recursive Sequence

Problem: Let x1=2x_1 = 2, xn+1=xn+32x_{n+1} = \frac{x_n + 3}{2}. Find limxn\lim x_n if it exists.

Solution:

Step 1: Assume limit LL exists and solve L=L+32L = \frac{L + 3}{2}:

2L=L+3L=32L = L + 3 \Rightarrow L = 3

Step 2: Compute first few terms: x1=2,x2=2.5,x3=2.75,x4=2.875x_1 = 2, x_2 = 2.5, x_3 = 2.75, x_4 = 2.875

The sequence is increasing and bounded above by 3.

Step 3: Prove boundedness: If xn<3x_n < 3, then xn+1=xn+32<3+32=3x_{n+1} = \frac{x_n + 3}{2} < \frac{3 + 3}{2} = 3

Step 4: Prove increasing: xn+1xn=xn+32xn=3xn2>0x_{n+1} - x_n = \frac{x_n + 3}{2} - x_n = \frac{3 - x_n}{2} > 0 (since xn<3x_n < 3)

By Monotone Bounded Theorem, xn3x_n \to 3.

Example 2.10: Limit of Difference

Problem: Find limn(n2+2nn22n)\lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}\right).

Solution:

Rationalize:

n2+2nn22n=(n2+2n)(n22n)n2+2n+n22n=4nn2+2n+n22n\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n} = \frac{(n^2 + 2n) - (n^2 - 2n)}{\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}} = \frac{4n}{\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}}

Divide by nn:

=41+2n+12n41+1=2= \frac{4}{\sqrt{1 + \frac{2}{n}} + \sqrt{1 - \frac{2}{n}}} \to \frac{4}{1 + 1} = 2
Example 2.11: Product of Limits

Problem: If limxn=2\lim x_n = 2 and yn=n+1ny_n = \frac{n+1}{n}, find limxnyn\lim x_n y_n.

Solution:

First, limyn=limn+1n=lim(1+1n)=1\lim y_n = \lim \frac{n+1}{n} = \lim\left(1 + \frac{1}{n}\right) = 1.

By the product rule:

limxnyn=(limxn)(limyn)=21=2\lim x_n y_n = (\lim x_n)(\lim y_n) = 2 \cdot 1 = 2
Summary: Limit Properties Checklist
Arithmetic Rules
  • Sum: lim(xn+yn)=limxn+limyn\lim(x_n + y_n) = \lim x_n + \lim y_n
  • Product: lim(xnyn)=limxnlimyn\lim(x_n \cdot y_n) = \lim x_n \cdot \lim y_n
  • Quotient: limxnyn=limxnlimyn\lim\frac{x_n}{y_n} = \frac{\lim x_n}{\lim y_n} (if denominator ≠ 0)
  • Power: limxnk=(limxn)k\lim x_n^k = (\lim x_n)^k
Key Theorems
  • Uniqueness: limit is unique if exists
  • Convergent ⟹ Bounded
  • Sign Preservation
  • Order Preservation (non-strict)

Section 7: Proof Techniques

Theorem 2.10: Limit of Composite Sequences

If limnxn=a\lim_{n \to \infty} x_n = a and ff is continuous at aa, then:

limnf(xn)=f(a)\lim_{n \to \infty} f(x_n) = f(a)
Example 2.12: Applying Composite Limit

Problem: Find limnsin(πn2n+1)\lim_{n \to \infty} \sin\left(\frac{\pi n}{2n+1}\right).

Solution:

First, limnπn2n+1=limnπ2+1n=π2\lim_{n \to \infty} \frac{\pi n}{2n+1} = \lim_{n \to \infty} \frac{\pi}{2 + \frac{1}{n}} = \frac{\pi}{2}

Since sin\sin is continuous:

limnsin(πn2n+1)=sin(π2)=1\lim_{n \to \infty} \sin\left(\frac{\pi n}{2n+1}\right) = \sin\left(\frac{\pi}{2}\right) = 1
Theorem 2.11: Dominated Convergence

If xnyn|x_n| \leq y_n for all nn and limyn=0\lim y_n = 0, then limxn=0\lim x_n = 0.

Proof of Theorem 2.11:

Given ϵ>0\epsilon > 0. Since yn0y_n \to 0, N\exists N such that yn<ϵ|y_n| < \epsilon for n>Nn > N.

For n>Nn > N: xn0=xnyn=yn<ϵ|x_n - 0| = |x_n| \leq y_n = |y_n| < \epsilon.

Example 2.13: Using Dominated Convergence

Problem: Find limn(1)nsin(n2)n\lim_{n \to \infty} \frac{(-1)^n \sin(n^2)}{n}.

Solution:

(1)nsin(n2)n=sin(n2)n1n0\left|\frac{(-1)^n \sin(n^2)}{n}\right| = \frac{|\sin(n^2)|}{n} \leq \frac{1}{n} \to 0

By dominated convergence: limn(1)nsin(n2)n=0\lim_{n \to \infty} \frac{(-1)^n \sin(n^2)}{n} = 0.

Remark 2.5: Telescoping Technique

For sequences involving differences, rewrite as telescoping sums:

xn=x1+k=1n1(xk+1xk)x_n = x_1 + \sum_{k=1}^{n-1}(x_{k+1} - x_k)

This is useful when the differences have a pattern.

Example 2.14: Telescoping Sum

Problem: Find limnk=1n1k(k+1)\lim_{n \to \infty} \sum_{k=1}^{n}\frac{1}{k(k+1)}.

Solution:

Using partial fractions: 1k(k+1)=1k1k+1\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}

k=1n1k(k+1)=k=1n(1k1k+1)=11n+1\sum_{k=1}^{n}\frac{1}{k(k+1)} = \sum_{k=1}^{n}\left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}

As nn \to \infty: 11n+111 - \frac{1}{n+1} \to 1.

Proof Structure Template
  1. State: "Let ϵ>0\epsilon > 0 be given."
  2. Construct N: Define N explicitly in terms of ε.
  3. Verify: Show that for n>Nn > N, the inequality holds.
  4. Conclude: "Therefore, limxn=a\lim x_n = a."
Example 2.15: Complex Rational Limit

Problem: Find limnn32n2+n3n3+n1\lim_{n \to \infty} \frac{n^3 - 2n^2 + n}{3n^3 + n - 1}.

Solution:

Divide numerator and denominator by n3n^3:

12n+1n23+1n21n310+03+00=13\frac{1 - \frac{2}{n} + \frac{1}{n^2}}{3 + \frac{1}{n^2} - \frac{1}{n^3}} \to \frac{1 - 0 + 0}{3 + 0 - 0} = \frac{1}{3}
Example 2.16: Nested Fractions

Problem: Find limn11+1n\lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}.

Solution:

As nn \to \infty: 1n0\frac{1}{n} \to 0, so 1+1n11 + \frac{1}{n} \to 1.

By quotient rule: 11+1n11=1\frac{1}{1 + \frac{1}{n}} \to \frac{1}{1} = 1.

Theorem 2.12: Infinite Limit Laws

If limxn=+\lim x_n = +\infty and limyn=L>0\lim y_n = L > 0, then:

  • limxnyn=+\lim x_n \cdot y_n = +\infty
  • lim(xn+yn)=+\lim (x_n + y_n) = +\infty
  • limynxn=0\lim \frac{y_n}{x_n} = 0
Remark 2.6: Indeterminate Forms

The following forms require careful analysis:

00\frac{0}{0}
\frac{\infty}{\infty}
00 \cdot \infty
\infty - \infty
11^\infty
000^0
Key Results Summary

Algebraic Properties

lim(xn±yn)=limxn±limyn\lim(x_n \pm y_n) = \lim x_n \pm \lim y_n

lim(xnyn)=limxnlimyn\lim(x_n \cdot y_n) = \lim x_n \cdot \lim y_n

Order Properties

xnynlimxnlimynx_n \leq y_n \Rightarrow \lim x_n \leq \lim y_n

Convergent ⟹ Bounded

Example 2.17: Product with Zero Limit

Problem: Find limnnsin1n\lim_{n \to \infty} n \cdot \sin\frac{1}{n}.

Solution:

This is 0\infty \cdot 0 form. Rewrite as:

nsin1n=sin1n1nn \sin\frac{1}{n} = \frac{\sin\frac{1}{n}}{\frac{1}{n}}

Let t=1n0t = \frac{1}{n} \to 0. Then sintt1\frac{\sin t}{t} \to 1.

Theorem 2.13: Ratio Comparison

If limnxnyn=L0\lim_{n \to \infty} \frac{x_n}{y_n} = L \neq 0 and ynay_n \to a, then xnLax_n \to La.

Remark 2.7: When Limit Laws Fail

Limit laws require all component limits to exist. Be careful with:

  • lim(xn+yn)\lim(x_n + y_n) when both diverge (may converge!)
  • lim(xnyn)\lim(x_n \cdot y_n) with 00 \cdot \infty form
  • limxnyn\lim \frac{x_n}{y_n} with 00\frac{0}{0} or \frac{\infty}{\infty}
Example 2.18: Divergent Sum Converging

Problem: Let xn=nx_n = n, yn=n+1ny_n = -n + \frac{1}{n}. Find lim(xn+yn)\lim(x_n + y_n).

Solution:

Both xn+x_n \to +\infty and yny_n \to -\infty, but:

xn+yn=n+(n+1n)=1n0x_n + y_n = n + (-n + \frac{1}{n}) = \frac{1}{n} \to 0
Strategy Selection Guide

Polynomial ratio: Divide by highest power

With square roots: Rationalize (multiply by conjugate)

Exponential form: Use ee definition

Indeterminate: Algebraic manipulation first

Example 2.19: Difference of Square Roots

Problem: Find limn(n2+nn)\lim_{n \to \infty} (\sqrt{n^2 + n} - n).

Solution:

Rationalize by multiplying by n2+n+nn2+n+n\frac{\sqrt{n^2+n}+n}{\sqrt{n^2+n}+n}:

n2+nn=n2+nn2n2+n+n=nn2+n+n\sqrt{n^2+n} - n = \frac{n^2+n-n^2}{\sqrt{n^2+n}+n} = \frac{n}{\sqrt{n^2+n}+n}

Divide by nn: 11+1n+111+1=12\frac{1}{\sqrt{1+\frac{1}{n}}+1} \to \frac{1}{1+1} = \frac{1}{2}.

Remark 2.8: Computing Tips
  • For n2+an+bn\sqrt{n^2 + an + b} - n, result is always a2\frac{a}{2}
  • For n3+an2+3n\sqrt[3]{n^3 + an^2 + \ldots} - n, use binomial expansion
  • Factor out dominant terms before simplifying
Chapter 2.2 Mastery Checklist
  • Sum, difference, product rules
  • Quotient rule (denominator ≠ 0)
  • Order preservation (≤, not <)
  • Convergent ⟹ Bounded
  • Indeterminate form strategies
Practice Quiz: Limit Properties & Operations
8
Questions
0
Correct
0%
Accuracy
1
If limxn=3\lim x_n = 3 and limyn=2\lim y_n = 2, what is lim(2xn3yn)\lim(2x_n - 3y_n)?
Easy
Not attempted
2
True or False: Every bounded sequence converges.
Easy
Not attempted
3
If xn>0x_n > 0 for all nn and limxn=L\lim x_n = L, what can we conclude about LL?
Medium
Not attempted
4
Which example shows that xn<ynx_n < y_n for all nn does NOT imply limxn<limyn\lim x_n < \lim y_n?
Medium
Not attempted
5
If limxn=a0\lim x_n = a \neq 0, which statement is TRUE?
Medium
Not attempted
6
If xnyn|x_n| \leq y_n and limyn=0\lim y_n = 0, what is limxn\lim x_n?
Hard
Not attempted
7
If lim(xn+yn)\lim(x_n + y_n) exists and limxn\lim x_n exists, must limyn\lim y_n exist?
Hard
Not attempted
8
What's wrong with: 'xn<1x_n < 1 for all nn, so limxn<1\lim x_n < 1'?
Hard
Not attempted

Frequently Asked Questions

Why does convergence imply boundedness but not vice versa?

Convergent sequences approach a specific value, so terms can't 'escape to infinity.' However, bounded sequences like {(-1)^n} can oscillate forever without settling down. Boundedness is necessary but not sufficient for convergence.

What is sign preservation and why is it useful?

If lim xₙ = a > 0, then xₙ > a/2 > 0 for large n. This lets us 'transfer' the positivity of the limit to the sequence terms. It's crucial for proving inequalities and for quotient rules (ensuring denominators stay away from zero).

Can the limit of a strict inequality be an equality?

Yes! If xₙ < yₙ for all n, we only get lim xₙ ≤ lim yₙ. Example: 1 - 1/n < 1 for all n, but lim(1 - 1/n) = 1 = lim 1. Strict inequalities become non-strict in the limit.

Why do limit laws require both sequences to converge?

For divergent sequences, expressions like ∞ - ∞ or 0 · ∞ are indeterminate. Example: xₙ = n and yₙ = n give xₙ - yₙ = 0 → 0, but xₙ = n and yₙ = n + 1 give xₙ - yₙ = -1 → -1. Same ∞ - ∞ form, different results.

What's the relationship between |xₙ| → |a| and xₙ → a?

xₙ → a implies |xₙ| → |a| (by reverse triangle inequality), but NOT vice versa. Exception: when a = 0, they're equivalent. Example: (-1)^n diverges but |(-1)^n| = 1 → 1.

Can I use limit laws before proving sequences converge?

No! You must first establish that both sequences converge (with finite limits). Only then can you apply the laws. A common error is writing 'lim(xₙ + yₙ) = lim xₙ + lim yₙ' when one of the limits doesn't exist.