MathIsimple
π
log
Γ
ζ
Δ
Course 3

Elementary Analytic Functions

Study the exponential, logarithmic, trigonometric, hyperbolic, and power functions in the complex domain with their properties, branch cuts, and applications.

Intermediate5-6 hours10 Practice Questions
Learning Objectives
Understand the complex exponential function and its properties
Master the complex logarithm and its branches
Study complex trigonometric and inverse trigonometric functions
Learn about complex hyperbolic functions
Understand power functions and their multi-valued nature
Work with branch cuts and principal values
Apply properties of elementary functions to solve problems
Understand the relationship between real and complex elementary functions

The Complex Exponential Function

Definition 3.1: Complex Exponential
The complex exponential function is defined as:
ez=ex+iy=ex(cosy+isiny)=exeiye^z = e^{x + iy} = e^x(\cos y + i\sin y) = e^x e^{iy}
for z=x+iyCz = x + iy \in \mathbb{C}.
Theorem 3.1: Properties of Complex Exponential
The complex exponential satisfies:
  • ez1+z2=ez1ez2e^{z_1 + z_2} = e^{z_1} e^{z_2} (addition formula)
  • ez0e^z \neq 0 for all zz
  • ez+2πi=eze^{z + 2\pi i} = e^z (periodic with period 2πi2\pi i)
  • (ez)=ez(e^z)' = e^z (its own derivative)
  • ez=ex|e^z| = e^x and arg(ez)=y+2kπ\arg(e^z) = y + 2k\pi
Proof of Theorem 3.1:

Using the definition: ez1+z2=e(x1+x2)+i(y1+y2)=ex1+x2[cos(y1+y2)+isin(y1+y2)]e^{z_1 + z_2} = e^{(x_1 + x_2) + i(y_1 + y_2)} = e^{x_1 + x_2}[\cos(y_1 + y_2) + i\sin(y_1 + y_2)]

Using trigonometric identities: =ex1ex2[(cosy1cosy2siny1siny2)+i(siny1cosy2+cosy1siny2)]= e^{x_1}e^{x_2}[(\cos y_1\cos y_2 - \sin y_1\sin y_2) + i(\sin y_1\cos y_2 + \cos y_1\sin y_2)]

=ex1(cosy1+isiny1)ex2(cosy2+isiny2)=ez1ez2= e^{x_1}(\cos y_1 + i\sin y_1) \cdot e^{x_2}(\cos y_2 + i\sin y_2) = e^{z_1} e^{z_2}

Periodicity: ez+2πi=eze2πi=ez(cos2π+isin2π)=eze^{z + 2\pi i} = e^z e^{2\pi i} = e^z(\cos 2\pi + i\sin 2\pi) = e^z

Example 3.1

Problem: Compute e1+iπe^{1 + i\pi}.

Solution:

e1+iπ=e1(cosπ+isinπ)=e(1+0i)=ee^{1 + i\pi} = e^1(\cos\pi + i\sin\pi) = e(-1 + 0i) = -e

The Complex Logarithm

Definition 3.2: Complex Logarithm
If ww satisfies ew=ze^w = z for z0z \neq 0, then ww is called a logarithm of zz, denoted Ln z\text{Ln } z. Writing z=reiθz = re^{i\theta} and w=u+ivw = u + iv:
Ln z=lnr+i(θ+2kπ)=lnz+iargz\text{Ln } z = \ln r + i(\theta + 2k\pi) = \ln|z| + i\arg z
where kZk \in \mathbb{Z}. The principal value is lnz=lnz+iargz\ln z = \ln|z| + i\arg z with argz(π,π]\arg z \in (-\pi, \pi].
Remark 3.1
The complex logarithm is infinitely many-valued because the argument can differ by multiples of 2π2\pi. The principal branch corresponds to k=0k = 0 and a branch cut along the negative real axis.
Example 3.2

Problem: Find all values of Ln(1)\text{Ln}(-1).

Solution:

Since 1=eiπ-1 = e^{i\pi}, we have Ln(1)=ln1+i(π+2kπ)=iπ(2k+1)\text{Ln}(-1) = \ln 1 + i(\pi + 2k\pi) = i\pi(2k + 1) for kZk \in \mathbb{Z}.

The principal value is ln(1)=iπ\ln(-1) = i\pi (for k=0k = 0).

Trigonometric Functions

Definition 3.3: Complex Trigonometric Functions
For zCz \in \mathbb{C}:
sinz=eizeiz2i,cosz=eiz+eiz2\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}
Other trigonometric functions are defined as: tanz=sinzcosz\tan z = \frac{\sin z}{\cos z}, cotz=coszsinz\cot z = \frac{\cos z}{\sin z}, etc.
Theorem 3.2: Properties of Complex Trigonometric Functions
Complex trigonometric functions satisfy:
  • sin(z+2π)=sinz\sin(z + 2\pi) = \sin z, cos(z+2π)=cosz\cos(z + 2\pi) = \cos z (period 2π2\pi)
  • cos2z+sin2z=1\cos^2 z + \sin^2 z = 1
  • sinz\sin z and cosz\cos z are unbounded (unlike real versions)
  • (sinz)=cosz(\sin z)' = \cos z, (cosz)=sinz(\cos z)' = -\sin z
Example 3.3

Problem: Show that sin(iy)|\sin(iy)| is unbounded.

Solution:

sin(iy)=ei(iy)ei(iy)2i=eyey2i=isinhy\sin(iy) = \frac{e^{i(iy)} - e^{-i(iy)}}{2i} = \frac{e^{-y} - e^{y}}{2i} = i\sinh y

Therefore sin(iy)=sinhy=eyey2|\sin(iy)| = |\sinh y| = \frac{e^{|y|} - e^{-|y|}}{2} \to \infty as y|y| \to \infty.

Hyperbolic Functions

Definition 3.4: Complex Hyperbolic Functions
For zCz \in \mathbb{C}:
sinhz=ezez2,coshz=ez+ez2\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}
Theorem 3.3: Relationship to Trigonometric Functions
Hyperbolic and trigonometric functions are related by:
sinh(iz)=isinz,cosh(iz)=cosz,sin(iz)=isinhz,cos(iz)=coshz\sinh(iz) = i\sin z, \quad \cosh(iz) = \cos z, \quad \sin(iz) = i\sinh z, \quad \cos(iz) = \cosh z

Power Functions

Definition 3.5: Complex Power Function
For z0z \neq 0 and αC\alpha \in \mathbb{C}:
zα=eαLn z=eα(lnz+iargz+2kπi)z^\alpha = e^{\alpha \text{Ln } z} = e^{\alpha(\ln|z| + i\arg z + 2k\pi i)}
The principal value is zα=eαlnzz^\alpha = e^{\alpha \ln z} where lnz\ln z is the principal logarithm.
Example 3.4

Problem: Find all values of iii^i.

Solution:

ii=eiLn i=ei(ln1+i(π/2+2kπ))=ei2(π/2+2kπ)=eπ/22kπi^i = e^{i\text{Ln } i} = e^{i(\ln 1 + i(\pi/2 + 2k\pi))} = e^{i^2(\pi/2 + 2k\pi)} = e^{-\pi/2 - 2k\pi}

So iii^i takes infinitely many real values: eπ/2,e5π/2,e9π/2,e^{-\pi/2}, e^{-5\pi/2}, e^{-9\pi/2}, \ldots

Inverse Trigonometric Functions

Definition 3.6: Inverse Trigonometric Functions
The inverse trigonometric functions are defined as:
arcsinz=iLn(iz+1z2),arccosz=iLn(z+z21)\arcsin z = -i\text{Ln}(iz + \sqrt{1-z^2}), \quad \arccos z = -i\text{Ln}(z + \sqrt{z^2-1})
arctanz=i2Ln(1iz1+iz)\arctan z = \frac{i}{2}\text{Ln}\left(\frac{1-iz}{1+iz}\right)
These are multi-valued functions. Their principal branches are obtained by choosing appropriate branches of the square root and logarithm.
Example 3.5

Problem: Find all values of arcsin2\arcsin 2.

Solution:

arcsin2=iLn(2i+14)=iLn(2i+i3)=iLn(i(2+3))\arcsin 2 = -i\text{Ln}(2i + \sqrt{1-4}) = -i\text{Ln}(2i + i\sqrt{3}) = -i\text{Ln}(i(2+\sqrt{3}))

=i[ln(2+3)+i(π/2+2kπ)]=π/2+2kπ+iln(2+3)= -i[\ln(2+\sqrt{3}) + i(\pi/2 + 2k\pi)] = \pi/2 + 2k\pi + i\ln(2+\sqrt{3})

Note that arcsin2\arcsin 2 is not a real number, unlike in real analysis.

Theorem 3.4: Properties of Inverse Functions
  • sin(arcsinz)=z\sin(\arcsin z) = z (on appropriate branches)
  • cos(arccosz)=z\cos(\arccos z) = z
  • tan(arctanz)=z\tan(\arctan z) = z
  • The derivatives are: (arcsinz)=11z2(\arcsin z)' = \frac{1}{\sqrt{1-z^2}}, (arccosz)=11z2(\arccos z)' = -\frac{1}{\sqrt{1-z^2}}, (arctanz)=11+z2(\arctan z)' = \frac{1}{1+z^2}

Hyperbolic Functions

Definition 3.7: Hyperbolic Functions
The hyperbolic functions are defined as:
sinhz=ezez2,coshz=ez+ez2\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}
tanhz=sinhzcoshz,cothz=coshzsinhz\tanh z = \frac{\sinh z}{\cosh z}, \quad \coth z = \frac{\cosh z}{\sinh z}
Theorem 3.5: Relationships with Trigonometric Functions
sinh(iz)=isinz,cosh(iz)=cosz\sinh(iz) = i\sin z, \quad \cosh(iz) = \cos z
sin(iz)=isinhz,cos(iz)=coshz\sin(iz) = i\sinh z, \quad \cos(iz) = \cosh z
Example 3.6

Problem: Show that cosh2zsinh2z=1\cosh^2 z - \sinh^2 z = 1.

Solution:

cosh2zsinh2z=(ez+ez2)2(ezez2)2=e2z+2+e2z(e2z2+e2z)4=1\cosh^2 z - \sinh^2 z = \left(\frac{e^z + e^{-z}}{2}\right)^2 - \left(\frac{e^z - e^{-z}}{2}\right)^2 = \frac{e^{2z} + 2 + e^{-2z} - (e^{2z} - 2 + e^{-2z})}{4} = 1
Example 3.7

Problem: Find all zeros of sinhz\sinh z.

Solution:

sinhz=0\sinh z = 0 implies ezez=0e^z - e^{-z} = 0, so e2z=1e^{2z} = 1

This gives 2z=2kπi2z = 2k\pi i, so z=kπiz = k\pi i for kZk \in \mathbb{Z}

Therefore, sinhz=0\sinh z = 0 if and only if z=kπiz = k\pi i.

Multi-valued Functions and Branch Cuts

Definition 3.8: Branch
A branch of a multi-valued function is a single-valued function obtained by restricting the function to a domain where it is single-valued and continuous. A branch cut is a curve (or line) along which a branch is discontinuous.
Example 3.8

Problem: Describe the principal branch of Ln z\text{Ln } z.

Solution:

The principal branch of Ln z\text{Ln } z is lnz=lnz+iargz\ln z = \ln|z| + i\arg z where π<argzπ-\pi < \arg z \leq \pi.

This branch is analytic in the cut plane C(,0]\mathbb{C} \setminus (-\infty, 0] (the negative real axis is the branch cut).

Across the branch cut, the function jumps by 2πi2\pi i.

Example 3.9

Problem: Find the branch points of f(z)=z(z1)f(z) = \sqrt{z(z-1)}.

Solution:

A branch point is where the function becomes multi-valued regardless of how small a neighborhood we take.

At z=0z = 0 and z=1z = 1, encircling these points changes the value of z(z1)\sqrt{z(z-1)}.

Also, z=z = \infty is typically a branch point for square roots.

A common branch cut is the line segment from 00 to 11.

Remark 3.1
The concept of Riemann surfaces provides a geometric way to understand multi-valued functions. On a Riemann surface, each branch of a multi-valued function corresponds to a "sheet", and the sheets are connected along branch cuts.

Additional Worked Examples

Example 3.10

Problem: Evaluate ln(1)\ln(-1) (all values).

Solution:

ln(1)=ln1+iarg(1)=ln1+i(π+2kπ)=iπ(1+2k)\ln(-1) = \ln|−1| + i\arg(-1) = \ln 1 + i(\pi + 2k\pi) = i\pi(1 + 2k)

Principal value: ln(1)=iπ\ln(-1) = i\pi

All values: ,3iπ,iπ,iπ,3iπ,5iπ,\ldots, -3i\pi, -i\pi, i\pi, 3i\pi, 5i\pi, \ldots

Example 3.11

Problem: Show that ez1ez2=ez1+z2e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}.

Solution:

Let z1=x1+iy1z_1 = x_1 + iy_1 and z2=x2+iy2z_2 = x_2 + iy_2. Then:

ez1ez2=ex1+iy1ex2+iy2=ex1eiy1ex2eiy2=ex1+x2ei(y1+y2)=ez1+z2e^{z_1} \cdot e^{z_2} = e^{x_1 + iy_1} \cdot e^{x_2 + iy_2} = e^{x_1}e^{iy_1} \cdot e^{x_2}e^{iy_2} = e^{x_1 + x_2}e^{i(y_1 + y_2)} = e^{z_1 + z_2}
Example 3.12

Problem: Find all cube roots of 8i-8i.

Solution:

Write 8i=8eiπ/2=8ei(π/2+2kπ)-8i = 8e^{-i\pi/2} = 8e^{i(-\pi/2 + 2k\pi)}

Cube roots: wk=81/3ei(π/2+2kπ)/3=2ei(π/6+2kπ/3)w_k = 8^{1/3} e^{i(-\pi/2 + 2k\pi)/3} = 2e^{i(-\pi/6 + 2k\pi/3)} for k=0,1,2k = 0, 1, 2

w0=2eiπ/6=3iw_0 = 2e^{-i\pi/6} = \sqrt{3} - i, w1=2eiπ/2=2iw_1 = 2e^{i\pi/2} = 2i, w2=2ei7π/6=3iw_2 = 2e^{i7\pi/6} = -\sqrt{3} - i

Study Tips

1. Handling Multi-valued Functions

Always specify which branch you're using. The principal branch uses π<argzπ-\pi < \arg z \leq \pi for logarithms and square roots. Be careful with branch cuts when integrating.

2. Exponential Identities

Many identities from real analysis extend: ez1+z2=ez1ez2e^{z_1 + z_2} = e^{z_1}e^{z_2}, (ez)=ez(e^z)' = e^z, ez+2kπi=eze^{z + 2k\pi i} = e^z. However, (ez)wezw(e^z)^w \neq e^{zw} in general.

3. Trigonometric Functions

Remember that sinz|\sin z| and cosz|\cos z| can exceed 1 for complex arguments. Use Euler's formula to derive identities.

Additional Examples

Example 3.13

Problem: Find all values of ln(1+i)\ln(1+i).

Solution:

1+i=2|1+i| = \sqrt{2}, arg(1+i)=π/4\arg(1+i) = \pi/4

ln(1+i)=ln2+i(π/4+2kπ)=12ln2+i(π/4+2kπ)\ln(1+i) = \ln\sqrt{2} + i(\pi/4 + 2k\pi) = \frac{1}{2}\ln 2 + i(\pi/4 + 2k\pi)

Principal value: 12ln2+iπ/4\frac{1}{2}\ln 2 + i\pi/4

Example 3.14

Problem: Evaluate i\sqrt{i} (all values).

Solution:

i=e(1/2)Ln i=e(1/2)(ln1+i(π/2+2kπ))=ei(π/4+kπ)\sqrt{i} = e^{(1/2)\text{Ln } i} = e^{(1/2)(\ln 1 + i(\pi/2 + 2k\pi))} = e^{i(\pi/4 + k\pi)}

For k=0k = 0: eiπ/4=1+i2e^{i\pi/4} = \frac{1+i}{\sqrt{2}}

For k=1k = 1: ei5π/4=1+i2e^{i5\pi/4} = -\frac{1+i}{\sqrt{2}}

So i=±1+i2\sqrt{i} = \pm\frac{1+i}{\sqrt{2}}

Example 3.15

Problem: Find the derivative of f(z)=zif(z) = z^i (principal branch).

Solution:

Using zi=eilnzz^i = e^{i\ln z} (principal branch):

f(z)=eilnzi1z=izi1z=izi1f'(z) = e^{i\ln z} \cdot i \cdot \frac{1}{z} = iz^i \cdot \frac{1}{z} = iz^{i-1}

Note: This formula holds for the principal branch in the cut plane.

Example 3.16

Problem: Show that cos(z1+z2)=cosz1cosz2sinz1sinz2\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2.

Solution:

Using Euler's formula:

cos(z1+z2)=ei(z1+z2)+ei(z1+z2)2=eiz1eiz2+eiz1eiz22\cos(z_1 + z_2) = \frac{e^{i(z_1+z_2)} + e^{-i(z_1+z_2)}}{2} = \frac{e^{iz_1}e^{iz_2} + e^{-iz_1}e^{-iz_2}}{2}

Expanding and using definitions of cosine and sine:

=cosz1cosz2sinz1sinz2= \cos z_1 \cos z_2 - \sin z_1 \sin z_2

Example 3.17

Problem: Find all solutions to sinz=2\sin z = 2.

Solution:

Write sinz=eizeiz2i=2\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2

Let w=eizw = e^{iz}, then w1/w2i=2\frac{w - 1/w}{2i} = 2, so w1/w=4iw - 1/w = 4i

Multiplying: w24iw1=0w^2 - 4iw - 1 = 0

w=2i±4+1=2i±i3=i(2±3)w = 2i \pm \sqrt{-4 + 1} = 2i \pm i\sqrt{3} = i(2 \pm \sqrt{3})

So eiz=i(2±3)e^{iz} = i(2 \pm \sqrt{3}), giving iz=ln(i(2±3))=ln(2±3)+i(π/2+2kπ)iz = \ln(i(2 \pm \sqrt{3})) = \ln(2 \pm \sqrt{3}) + i(\pi/2 + 2k\pi)

Therefore: z=π2+2kπiln(2±3)z = \frac{\pi}{2} + 2k\pi - i\ln(2 \pm \sqrt{3})

Example 3.18

Problem: Prove that ez=eRe(z)|e^z| = e^{\text{Re}(z)}.

Solution:

If z=x+iyz = x + iy, then ez=exeiye^z = e^x e^{iy}

ez=exeiy=ex1=eRe(z)|e^z| = |e^x| \cdot |e^{iy}| = e^x \cdot 1 = e^{\text{Re}(z)}

This shows that ez|e^z| depends only on the real part of zz.

Example 3.19

Problem: Find the period of tanz\tan z.

Solution:

Since sinz\sin z and cosz\cos z have period 2π2\pi, tanz=sinz/cosz\tan z = \sin z/\cos z also has period 2π2\pi (or more precisely, period π\pi since tan(z+π)=tanz\tan(z + \pi) = \tan z).

Example 3.20

Problem: Show that cosh2zsinh2z=1\cosh^2 z - \sinh^2 z = 1.

Solution:

cosh2zsinh2z=(ez+ez2)2(ezez2)2=e2z+2+e2z(e2z2+e2z)4=1\cosh^2 z - \sinh^2 z = \left(\frac{e^z + e^{-z}}{2}\right)^2 - \left(\frac{e^z - e^{-z}}{2}\right)^2 = \frac{e^{2z} + 2 + e^{-2z} - (e^{2z} - 2 + e^{-2z})}{4} = 1
Example 3.21

Problem: Find all solutions to ez=1e^z = -1.

Solution:

ez=1=eiπe^z = -1 = e^{i\pi}

z=iπ+2kπi=iπ(1+2k)z = i\pi + 2k\pi i = i\pi(1 + 2k) for kZk \in \mathbb{Z}

So z=,3iπ,iπ,iπ,3iπ,z = \ldots, -3i\pi, -i\pi, i\pi, 3i\pi, \ldots

Example 3.22

Problem: Show that sinz=0\sin z = 0 if and only if z=kπz = k\pi for some integer kk.

Solution:

sinz=0\sin z = 0 means eizeiz2i=0\frac{e^{iz} - e^{-iz}}{2i} = 0, so eiz=eize^{iz} = e^{-iz}

This implies e2iz=1=e2kπie^{2iz} = 1 = e^{2k\pi i}, so 2iz=2kπi2iz = 2k\pi i, giving z=kπz = k\pi.

Example 3.23

Problem: Show that cosz=0\cos z = 0 if and only if z=π/2+kπz = \pi/2 + k\pi for some integer kk.

Solution:

cosz=0\cos z = 0 means eiz+eiz2=0\frac{e^{iz} + e^{-iz}}{2} = 0, so eiz=eize^{iz} = -e^{-iz}

This implies e2iz=1=eiπe^{2iz} = -1 = e^{i\pi}, so 2iz=iπ+2kπi2iz = i\pi + 2k\pi i

Therefore: z=π/2+kπz = \pi/2 + k\pi.

Example 3.24

Problem: Find the derivative of f(z)=z1/3f(z) = z^{1/3} (principal branch).

Solution:

Using z1/3=e(1/3)lnzz^{1/3} = e^{(1/3)\ln z}:

f(z)=e(1/3)lnz131z=13z1/31z=13z2/3f'(z) = e^{(1/3)\ln z} \cdot \frac{1}{3} \cdot \frac{1}{z} = \frac{1}{3}z^{1/3} \cdot \frac{1}{z} = \frac{1}{3}z^{-2/3}

This is valid in the cut plane where the principal branch of the logarithm is defined.

Example 3.25

Problem: Determine the branch cut for f(z)=z21f(z) = \sqrt{z^2 - 1} and explain how to choose it to make the function analytic.

Solution:

The branch points occur where z21=0z^2 - 1 = 0, i.e., at z=±1z = \pm 1.

We can write f(z)=(z1)(z+1)f(z) = \sqrt{(z-1)(z+1)}. To make this single-valued, we need a branch cut connecting the branch points.

Option 1: Cut along the real axis from 1-1 to 11. This makes the function analytic in C[1,1]\mathbb{C} \setminus [-1, 1].

Option 2: Cut along rays from 1-1 to -\infty and from 11 to \infty along the real axis. This makes the function analytic in C((,1][1,))\mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty)).

The choice depends on the application. For many purposes, cutting along [1,1][-1, 1] is convenient as it keeps the function analytic on most of the real axis.

Example 3.26

Problem: Show how different branch cuts for lnz\ln z affect the value of ln(1)\ln(-1).

Solution:

The general form is ln(1)=ln1+iarg(1)=0+i(π+2kπ)=iπ(2k+1)\ln(-1) = \ln|{-1}| + i\arg(-1) = 0 + i(\pi + 2k\pi) = i\pi(2k+1) for any integer kk.

Principal branch (cut along negative real axis): arg(1)=π\arg(-1) = \pi, so ln(1)=iπ\ln(-1) = i\pi

Alternative branch (cut along positive real axis): If we choose argz(0,2π]\arg z \in (0, 2\pi], then arg(1)=π\arg(-1) = \pi still, so ln(1)=iπ\ln(-1) = i\pi

Different branch: If we choose argz(π/2,5π/2]\arg z \in (\pi/2, 5\pi/2], then arg(1)=3π\arg(-1) = 3\pi, so ln(1)=3iπ\ln(-1) = 3i\pi

The branch cut determines which values of the argument are used, thus affecting the function values. The principal branch is most common, giving ln(1)=iπ\ln(-1) = i\pi.

Practice Problems

Elementary Analytic Functions Practice
10
Questions
0
Correct
0%
Accuracy
1
The complex exponential eze^z is periodic with period:
Medium
Not attempted
2
The complex logarithm lnz\ln z is:
Easy
Not attempted
3
For zCz \in \mathbb{C}, sinz\sin z is:
Medium
Not attempted
4
The principal value of ln(1)\ln(-1) is:
Medium
Not attempted
5
For complex zz, cosz\cos z and sinz\sin z satisfy:
Easy
Not attempted
6
The function z1/2z^{1/2} (square root) has:
Hard
Not attempted
7
For z=x+iyz = x + iy, the real and imaginary parts of eze^z are:
Easy
Not attempted
8
The branch cut for the principal branch of lnz\ln z is typically taken along:
Medium
Not attempted
9
For zCz \in \mathbb{C}, sinhz\sinh z is related to sinz\sin z by:
Medium
Not attempted
10
The function ziz^i (where ii is the imaginary unit) is:
Hard
Not attempted

Frequently Asked Questions

Why is the complex exponential periodic with imaginary period?

Since $e^{z + 2\pi i} = e^z e^{2\pi i} = e^z \cdot 1 = e^z$, adding $2\pi i$ doesn't change the value. This is fundamentally different from real exponentials, which are not periodic.

What is a branch cut?

A branch cut is a curve in the complex plane along which a multi-valued function is made single-valued (single branch). It's typically taken along a ray or line where the function is discontinuous in its multi-valued form.

Why is the complex logarithm multi-valued?

The logarithm $\ln z = \ln|z| + i\arg z$ is multi-valued because the argument $\arg z$ can differ by any multiple of $2\pi$. Each value $\arg z + 2k\pi$ gives a different branch of the logarithm.

How do complex trigonometric functions differ from real ones?

Complex trigonometric functions are unbounded, while real ones are bounded. Also, identities like $\cos^2 z + \sin^2 z = 1$ still hold, but $|\sin z|$ and $|\cos z|$ can be arbitrarily large for complex arguments.

What is the principal value of a multi-valued function?

The principal value is the value chosen from among the many possible values, typically by restricting the argument to a specific range (like $(-\pi, \pi]$ for the logarithm) or choosing a specific branch.