MathSimpler
← Back to Triangle Solving

Triangle Solving Formulas

Comprehensive formula reference for triangle solving: sine law, cosine law, area calculations, and specialized formulas for different triangle types and solving scenarios.

Sine Law (Law of Sines) Formulas
Fundamental relationships between sides and opposite angles
Basic Sine Law
asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R
Fundamental relationship between sides and opposite angles
R is the circumradius of the triangle
Side Calculations
a=2RsinAb=2RsinBc=2RsinCa = 2R\sin A \quad b = 2R\sin B \quad c = 2R\sin C
Calculate sides using angles and circumradius
Useful when circumradius is known
Angle Calculations
sinA=a2RsinB=b2RsinC=c2R\sin A = \frac{a}{2R} \quad \sin B = \frac{b}{2R} \quad \sin C = \frac{c}{2R}
Calculate angle sines using sides and circumradius
Use arcsin to find actual angle values
Ratio Form
a:b:c=sinA:sinB:sinCa : b : c = \sin A : \sin B : \sin C
Proportional relationship between sides and angle sines
Useful for solving proportion problems
Extended Ratio
a+b+csinA+sinB+sinC=2R\frac{a + b + c}{\sin A + \sin B + \sin C} = 2R
Combined ratio involving all sides and angles
Generalizes the basic sine law relationship
Cosine Law (Law of Cosines) Formulas
Relationships between sides and included angles
Standard Forms
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc\cos A
Calculate unknown side using two sides and included angle
Also: b² = a² + c² - 2ac cos B, c² = a² + b² - 2ab cos C
Angle Forms
cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}
Calculate angle using all three sides
Also: cos B = (a² + c² - b²)/(2ac), cos C = (a² + b² - c²)/(2ab)
Pythagorean Extension
c2=a2+b2 when C=90°c^2 = a^2 + b^2 \text{ when } C = 90°
Cosine law reduces to Pythagorean theorem for right triangles
cos 90° = 0, eliminating the 2ab cos C term
Triangle Classification
{c2<a2+b2acutec2=a2+b2rightc2>a2+b2obtuse\begin{cases} c^2 < a^2 + b^2 & \text{acute} \\ c^2 = a^2 + b^2 & \text{right} \\ c^2 > a^2 + b^2 & \text{obtuse} \end{cases}
Determine triangle type using side relationships
Applies to the angle opposite the longest side
Triangle Area Formulas
Various methods for calculating triangle area
SAS Area Formula
S=12absinC=12bcsinA=12acsinBS = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B
Area using two sides and included angle
Most common formula when angle is known
Heron's Formula
S=s(sa)(sb)(sc) where s=a+b+c2S = \sqrt{s(s-a)(s-b)(s-c)} \text{ where } s = \frac{a+b+c}{2}
Area using only the three sides
s is the semi-perimeter; useful for SSS cases
Base-Height Formula
S=12×base×heightS = \frac{1}{2} \times \text{base} \times \text{height}
Traditional area formula using base and height
Height is perpendicular distance from vertex to opposite side
Circumradius Area
S=abc4RS = \frac{abc}{4R}
Area using all sides and circumradius
Connects area to circumscribed circle properties
Inradius Area
S=rs=12(a+b+c)rS = rs = \frac{1}{2}(a+b+c) \cdot r
Area using perimeter and inradius
r is the radius of inscribed circle
Coordinate Area
S=12x1(y2y3)+x2(y3y1)+x3(y1y2)S = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|
Area using vertex coordinates
For vertices A(x₁,y₁), B(x₂,y₂), C(x₃,y₃)
Special Triangle Types
Specialized formulas for specific triangle configurations
Right Triangle
c2=a2+b2 (Pythagorean theorem)c^2 = a^2 + b^2 \text{ (Pythagorean theorem)}
S=12ab (legs as base and height)S = \frac{1}{2}ab \text{ (legs as base and height)}
sinA=ac,cosA=bc,tanA=ab\sin A = \frac{a}{c}, \cos A = \frac{b}{c}, \tan A = \frac{a}{b}
c is hypotenuse, a and b are legs
Equilateral Triangle
S=34a2S = \frac{\sqrt{3}}{4}a^2
h=32a (height)h = \frac{\sqrt{3}}{2}a \text{ (height)}
R=a3 (circumradius)R = \frac{a}{\sqrt{3}} \text{ (circumradius)}
r=a23 (inradius)r = \frac{a}{2\sqrt{3}} \text{ (inradius)}
All sides equal (a), all angles 60°
Isosceles Triangle
S=b44a2b2S = \frac{b}{4}\sqrt{4a^2 - b^2}
h=124a2b2 (height to base)h = \frac{1}{2}\sqrt{4a^2 - b^2} \text{ (height to base)}
cosA2=ab (half vertex angle)\cos \frac{A}{2} = \frac{a}{b} \text{ (half vertex angle)}
Two equal sides (a), base (b)
Related Geometric Formulas
Additional relationships and properties
Angle Relationships
A+B+C=180°=π radiansA + B + C = 180° = \pi \text{ radians}
sinC=sin(A+B)\sin C = \sin(A + B)
cosC=cos(A+B)\cos C = -\cos(A + B)
sinA+B2=cosC2\sin \frac{A+B}{2} = \cos \frac{C}{2}
cosA+B2=sinC2\cos \frac{A+B}{2} = \sin \frac{C}{2}
Circle Relationships
R=abc4S (circumradius)R = \frac{abc}{4S} \text{ (circumradius)}
r=Ss (inradius)r = \frac{S}{s} \text{ (inradius)}
r=(sa)tanA2 (inradius alternative)r = (s-a)\tan \frac{A}{2} \text{ (inradius alternative)}
ra=stanA2 (exradius opposite A)r_a = s\tan \frac{A}{2} \text{ (exradius opposite A)}
Height Formulas
ha=2Sa=bsinC=csinBh_a = \frac{2S}{a} = b\sin C = c\sin B
hb=2Sb=asinC=csinAh_b = \frac{2S}{b} = a\sin C = c\sin A
hc=2Sc=asinB=bsinAh_c = \frac{2S}{c} = a\sin B = b\sin A
Median Formulas
ma=122b2+2c2a2m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}
mb=122a2+2c2b2m_b = \frac{1}{2}\sqrt{2a^2 + 2c^2 - b^2}
mc=122a2+2b2c2m_c = \frac{1}{2}\sqrt{2a^2 + 2b^2 - c^2}
Triangle Solving Applications
Which formulas to use for different scenarios
Two Angles and One Side (AAS/ASA)
Primary Method: Sine Law
Steps:
  1. 1Findthirdangle:C=180°ABFind third angle: C = 180° - A - B
  2. 2Usesinelaw:asinA=bsinB=csinCUse sine law: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
  3. 3CalculateunknownsidesCalculate unknown sides
Two Sides and Included Angle (SAS)
Primary Method: Cosine Law → Sine Law
Steps:
  1. 1Findthirdside:c2=a2+b22abcosCFind third side: c² = a² + b² - 2ab cos C
  2. 2FindremaininganglesusingcosinelaworsinelawFind remaining angles using cosine law or sine law
  3. 3Calculatearea:S=½absinCCalculate area: S = ½ab sin C
All Three Sides (SSS)
Primary Method: Cosine Law
Steps:
  1. 1Findangles:cosA=(b2+c2a2)/(2bc)Find angles: cos A = (b² + c² - a²)/(2bc)
  2. 2RepeatforotheranglesRepeat for other angles
  3. 3CalculateareausingHeronsformulaCalculate area using Heron's formula
Two Sides and Non-Included Angle (SSA)
Primary Method: Sine Law (Ambiguous Case)
Steps:
  1. 1Usesinelaw:sinB=(bsinA)/aUse sine law: sin B = (b sin A)/a
  2. 2Checkfor0,1,or2solutionsCheck for 0, 1, or 2 solutions
  3. 3FindremainingelementsforeachvalidsolutionFind remaining elements for each valid solution
Quick Reference Guide
Essential formulas at a glance
Given InformationPrimary FormulaAdditional Notes
Two angles, one side (AAS/ASA)asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}Unique solution
Two sides, included angle (SAS)c2=a2+b22abcosCc^2 = a^2 + b^2 - 2ab\cos CUse cosine law first
All three sides (SSS)cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}Use cosine law for angles
Two sides, opposite angle (SSA)sinB=bsinAa\sin B = \frac{b\sin A}{a}Ambiguous case: 0, 1, or 2 solutions
Area (SAS known)S=12absinCS = \frac{1}{2}ab\sin CMost direct area method
Area (SSS known)S=s(sa)(sb)(sc)S = \sqrt{s(s-a)(s-b)(s-c)}Heron's formula