Trigonometry - Worked Examples

Complete collection of examples for graphs, identities, and formulas

← Back to Course

Graphing Trigonometric Functions

Example 1: Analyzing y = 3sin(2x - π/4) + 1

Problem: Find amplitude, period, phase shift, and vertical shift.

Solution:

General form: y = A sin(B(x - h)) + k

Rewrite: y = 3sin(2(x - π/8)) + 1

  • Amplitude = |A| = |3| = 3
  • Period = 2π/|B| = 2π/2 = π
  • Phase shift = π/8 to the right
  • Vertical shift = 1 unit up

Example 2: Writing Equation from Graph

Problem: A cosine function has max = 5, min = 1, period = 4π. Write the equation.

Solution:

Amplitude = (max - min)/2 = (5 - 1)/2 = 2

Vertical shift = (max + min)/2 = (5 + 1)/2 = 3

B = 2π/period = 2π/(4π) = 1/2

$$y = 2\cos\left(\frac{1}{2}x\right) + 3$$

Example 3: Finding Asymptotes of Tangent

Problem: Find the asymptotes of y = tan(3x).

Solution:

Tangent has asymptotes where cos = 0, i.e., at 3x = π/2 + nπ

$$x = \frac{\pi}{6} + \frac{n\pi}{3}, \quad n \in \mathbb{Z}$$

First few asymptotes: x = π/6, π/2, 5π/6, 7π/6, ...

Example 4: Ferris Wheel Problem

Problem: A Ferris wheel has diameter 40m, center 25m high, and rotates every 2 minutes. Model height vs time.

Solution:

Amplitude = radius = 20m

Vertical shift = center height = 25m

Period = 2 min, so B = 2π/2 = π

$$h(t) = -20\cos(\pi t) + 25$$

(Negative cosine because rider starts at bottom)

Sum and Difference Identities

Example 1: Finding Exact Value of sin(75°)

Problem: Find the exact value of sin(75°).

Solution:

$$\sin 75° = \sin(45° + 30°) = \sin 45°\cos 30° + \cos 45°\sin 30°$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

Answer: (√6 + √2)/4 ≈ 0.9659

Example 2: Finding cos(15°)

Problem: Find the exact value of cos(15°).

Solution:

$$\cos 15° = \cos(45° - 30°) = \cos 45°\cos 30° + \sin 45°\sin 30°$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

Answer: (√6 + √2)/4

Example 3: tan(A + B)

Problem: If tan(A) = 2 and tan(B) = 3, find tan(A + B).

Solution:

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{2 + 3}{1 - 2 \times 3} = \frac{5}{1 - 6} = \frac{5}{-5} = -1$$

Answer: tan(A + B) = -1

Example 4: Simplifying with Identities

Problem: Simplify: sin(x + π/6) + sin(x - π/6)

Solution:

Expand each term:

sin(x + π/6) = sin(x)cos(π/6) + cos(x)sin(π/6) = (√3/2)sin(x) + (1/2)cos(x)

sin(x - π/6) = sin(x)cos(π/6) - cos(x)sin(π/6) = (√3/2)sin(x) - (1/2)cos(x)

Adding: (√3/2)sin(x) + (1/2)cos(x) + (√3/2)sin(x) - (1/2)cos(x) = √3 sin(x)

Double Angle Formulas

Example 1: Finding sin(2θ)

Problem: If sin(θ) = 3/5 and θ is in Q1, find sin(2θ).

Solution:

First find cos(θ): cos²θ = 1 - sin²θ = 1 - 9/25 = 16/25, so cos(θ) = 4/5 (positive in Q1)

$$\sin(2\theta) = 2\sin\theta\cos\theta = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}$$

Answer: sin(2θ) = 24/25

Example 2: Finding cos(2θ)

Problem: If cos(θ) = -1/3 and θ is in Q2, find cos(2θ).

Solution:

Using cos(2θ) = 2cos²θ - 1:

$$\cos(2\theta) = 2\left(-\frac{1}{3}\right)^2 - 1 = 2 \times \frac{1}{9} - 1 = \frac{2}{9} - 1 = -\frac{7}{9}$$

Answer: cos(2θ) = -7/9

Example 3: Solving with Double Angle

Problem: Solve sin(2x) = cos(x) for 0 ≤ x < 2π.

Solution:

Replace sin(2x) = 2sin(x)cos(x):

2sin(x)cos(x) = cos(x)

cos(x)(2sin(x) - 1) = 0

Either cos(x) = 0 or sin(x) = 1/2

cos(x) = 0: x = π/2, 3π/2

sin(x) = 1/2: x = π/6, 5π/6

Answer: x = π/6, π/2, 5π/6, 3π/2

Reduction Formulas

Example 1: Using sin(π - θ)

Problem: Find sin(150°).

Solution:

$$\sin 150° = \sin(180° - 30°) = \sin 30° = \frac{1}{2}$$

Answer: sin(150°) = 1/2

Example 2: Using cos(π + θ)

Problem: Find cos(210°).

Solution:

$$\cos 210° = \cos(180° + 30°) = -\cos 30° = -\frac{\sqrt{3}}{2}$$

Answer: cos(210°) = -√3/2

Example 3: Combining Reductions

Problem: Find tan(315°).

Solution:

315° = 360° - 45°, so it's in Q4 where tan is negative.

$$\tan 315° = -\tan 45° = -1$$

Or: tan(315°) = tan(-45°) = -tan(45°) = -1

Answer: tan(315°) = -1

Example 4: Simplifying Complex Expression

Problem: Simplify: sin(π/2 - x) + cos(π - x) + sin(3π/2 + x)

Solution:

sin(π/2 - x) = cos(x) (cofunction identity)

cos(π - x) = -cos(x)

sin(3π/2 + x) = -cos(x)

Sum = cos(x) + (-cos(x)) + (-cos(x)) = -cos(x)