MathSimpler
← Back to Plane Vectors

Plane Vector Dot Product

Master the fundamental operation of vector dot product: understand vector angles, scalar products, geometric interpretations, calculation methods, and practical applications in mathematics and physics.

Core Concepts and Definitions
Fundamental definitions of vector angles and dot product
Vector Angle Definition
Definition of angle between two non-zero vectors
Definition:
Given a,b0, construct OA=a,OB=b\text{Given } \mathbf{a}, \mathbf{b} \neq \mathbf{0}, \text{ construct } \overrightarrow{OA}=\mathbf{a}, \overrightarrow{OB}=\mathbf{b}
AOB is the angle between vectors\angle AOB \text{ is the angle between vectors}
Key Properties:
  • Angle range: 0° ≤ θ ≤ 180°
  • When θ = 0° or 180°: vectors are collinear
  • When θ = 90°: vectors are perpendicular
  • Always measured as the smaller angle between vectors
Dot Product Definition
Scalar product of two non-zero vectors with included angle θ
Definition:
ab=abcosθ\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta
The scalar quantity abcosθ is called the dot product\text{The scalar quantity } |\mathbf{a}||\mathbf{b}|\cos\theta \text{ is called the dot product}
Key Properties:
  • Results in a scalar quantity, not a vector
  • Depends on both magnitudes and the angle between vectors
  • Can be positive, negative, or zero
  • Fundamental operation in vector algebra
Vector Projection
Component of one vector in the direction of another
Definition:
acosθ=abb|\mathbf{a}|\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}
bcosθ=aba|\mathbf{b}|\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}
Key Properties:
  • |𝐚|cos θ is the projection of 𝐚 onto 𝐛
  • |𝐛|cos θ is the projection of 𝐛 onto 𝐚
  • Projection can be positive, negative, or zero
  • Geometric interpretation of dot product
Geometric Interpretation
Physical meaning of the dot product operation
Definition:
ab=a×(projection of b onto a)\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \times \text{(projection of } \mathbf{b} \text{ onto } \mathbf{a}\text{)}
Also equals: b×(projection of a onto b)\text{Also equals: } |\mathbf{b}| \times \text{(projection of } \mathbf{a} \text{ onto } \mathbf{b}\text{)}
Key Properties:
  • Measures how much vectors point in same direction
  • Zero when vectors are perpendicular
  • Maximum when vectors are parallel
  • Essential for work calculations in physics
Dot Product Operation Laws
Fundamental algebraic properties of the dot product
Commutative Law
Order of vectors doesn't matter in dot product
Formula:
ab=ba\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}
abcosθ=bacosθ|\mathbf{a}||\mathbf{b}|\cos\theta = |\mathbf{b}||\mathbf{a}|\cos\theta
Distributive Law
Dot product distributes over vector addition
Formula:
(a+b)c=ac+bc(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}
Also: a(b+c)=ab+ac\text{Also: } \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}
Scalar Multiplication Law
Scalar can be factored out of dot product
Formula:
(λa)b=λ(ab)=a(λb)(\lambda\mathbf{a}) \cdot \mathbf{b} = \lambda(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda\mathbf{b})
where λ is any real number\text{where } \lambda \text{ is any real number}
Essential Formulas and Results
Key formulas for calculations and applications
Vector Magnitude
Geometric Form:
a=aa|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}
Coordinate Form:
a=x12+y12|\mathbf{a}| = \sqrt{x_1^2 + y_1^2}
Application: Calculate length of any vector
Angle Cosine
Geometric Form:
cosθ=abab\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
Coordinate Form:
cosθ=x1x2+y1y2x12+y12x22+y22\cos\theta = \frac{x_1x_2 + y_1y_2}{\sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2}}
Application: Find angle between any two vectors
Perpendicular Condition
Geometric Form:
abab=0\mathbf{a} \perp \mathbf{b} \Leftrightarrow \mathbf{a} \cdot \mathbf{b} = 0
Coordinate Form:
x1x2+y1y2=0x_1x_2 + y_1y_2 = 0
Application: Check if vectors are perpendicular
Cauchy-Schwarz Inequality
Geometric Form:
abab|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}||\mathbf{b}|
Coordinate Form:
x1x2+y1y2x12+y12x22+y22|x_1x_2 + y_1y_2| \leq \sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2}
Application: Fundamental inequality for dot products
Problem-Solving Strategies
Systematic approaches to dot product problems
Dot Product Calculation
Use coordinate formula or geometric definition
Step-by-step Process:
  1. 1Identify vector coordinates: 𝐚 = (x₁, y₁), 𝐛 = (x₂, y₂)
  2. 2Apply coordinate formula: 𝐚 · 𝐛 = x₁x₂ + y₁y₂
  3. 3Alternative: Use |𝐚||𝐛|cos θ if magnitudes and angle known
  4. 4Verify result makes geometric sense
Angle Calculation
Use dot product formula and inverse cosine
Step-by-step Process:
  1. 1Calculate dot product: 𝐚 · 𝐛
  2. 2Find magnitudes: |𝐚| and |𝐛|
  3. 3Apply formula: cos θ = (𝐚 · 𝐛)/(|𝐚||𝐛|)
  4. 4Use arccos to find angle: θ = arccos(result)
Projection Problems
Use geometric interpretation of dot product
Step-by-step Process:
  1. 1Identify which vector to project onto which
  2. 2Calculate scalar projection: comp_𝐛(𝐚) = (𝐚 · 𝐛)/|𝐛|
  3. 3For vector projection: proj_𝐛(𝐚) = ((𝐚 · 𝐛)/|𝐛|²)𝐛
  4. 4Verify direction and magnitude
Real-World Applications
How dot product is used in various fields
Physics Applications
  • Work calculation: W = 𝐅 · 𝐝 (force dot displacement)
  • Power calculation: P = 𝐅 · 𝐯 (force dot velocity)
  • Component analysis of forces
  • Energy calculations in mechanical systems
Geometry Applications
  • Finding angles between lines or planes
  • Checking perpendicularity of geometric objects
  • Calculating distances from points to lines
  • Determining orthogonal vectors
Engineering Applications
  • Signal processing and correlation analysis
  • Computer graphics lighting calculations
  • Structural analysis and load distributions
  • Control systems and feedback analysis
Important Points to Remember
Common misconceptions and key insights
✓ Key Insights
Projection is a Number: It can be positive, negative, or zero, representing the signed length along the direction.
Geometric Meaning: Dot product measures how much two vectors "agree" in direction - zero means perpendicular.
⚠ Common Mistakes
Zero Dot Product: 𝐚 · 𝐛 = 0 doesn't mean 𝐚 = 𝟎 or 𝐛 = 𝟎; they could be perpendicular.
No Associativity: Dot product doesn't satisfy associative law - (𝐚 · 𝐛) · 𝐜 is meaningless.