MathIsimple
LA-6.4
Available
Advanced

Jordan Normal Form

Jordan form extends diagonalization to handle ALL matrices over algebraically closed fields. When a matrix isn't diagonalizable, Jordan form provides the next-best canonical representation.

The Core Idea: Every matrix is similar to a block-diagonal matrix where each block is a "Jordan block"—λ\lambda on the diagonal and 1s on the superdiagonal.

Learning Objectives
  • Define Jordan blocks and Jordan normal form
  • Understand when Jordan form is needed (non-diagonalizable matrices)
  • Find generalized eigenvectors systematically
  • Compute powers of Jordan blocks using binomial expansion
  • Understand the uniqueness of Jordan form (up to block order)
  • Apply Jordan form to matrix exponentials and differential equations
  • Determine the Jordan structure from algebraic and geometric multiplicities
  • Compute matrix functions using Jordan decomposition
Prerequisites
  • Diagonalization and when it fails (LA-6.3)
  • Eigenspaces and multiplicities
  • Nilpotent matrices and their properties
  • Kernel and image of linear maps
  • Matrix similarity

1. Jordan Block

Definition 6.6: Jordan Block

A Jordan block Jk(λ)J_k(\lambda) is a k×kk \times k matrix:

Jk(λ)=(λ1000λ1000λ1000λ)J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}

The eigenvalue λ\lambda appears on the main diagonal, and 1s appear on the superdiagonal (immediately above the main diagonal).

Remark 6.3: Decomposition

Every Jordan block decomposes as Jk(λ)=λIk+NkJ_k(\lambda) = \lambda I_k + N_k where:

Nk=(0100001000010000)N_k = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}

The matrix NkN_k is nilpotent with Nkk=0N_k^k = 0 but Nkk10N_k^{k-1} \neq 0.

Example 6.5: Small Jordan Blocks

1×1 block: J1(λ)=(λ)J_1(\lambda) = (\lambda) — just a scalar (diagonal entry)

2×2 block:

J2(λ)=(λ10λ)=λI+(0100)J_2(\lambda) = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \lambda I + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}

3×3 block:

J3(λ)=(λ100λ100λ)J_3(\lambda) = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}
Theorem 6.8: Properties of Jordan Blocks

For Jk(λ)J_k(\lambda):

  • Characteristic polynomial: χJk(x)=(xλ)k\chi_{J_k}(x) = (x - \lambda)^k
  • Minimal polynomial: mJk(x)=(xλ)km_{J_k}(x) = (x - \lambda)^k
  • Eigenvalue: only λ\lambda with algebraic multiplicity kk
  • Geometric multiplicity: g(λ)=1g(\lambda) = 1 (only one eigenvector, up to scaling)
Proof:

The eigenvectors satisfy (Jk(λ)λI)v=Nkv=0(J_k(\lambda) - \lambda I)v = N_k v = 0. Since NkN_k has rank k1k-1, the kernel has dimension 1.

2. Jordan Normal Form Theorem

Theorem 6.9: Jordan Normal Form (Existence)

Let AMn(C)A \in M_n(\mathbb{C}) be any square matrix over the complex numbers. Then AA is similar to a Jordan matrix:

A=PJP1,J=(Jk1(λ1)Jk2(λ2)Jkr(λr))A = PJP^{-1}, \quad J = \begin{pmatrix} J_{k_1}(\lambda_1) & & \\ & J_{k_2}(\lambda_2) & \\ & & \ddots & \\ & & & J_{k_r}(\lambda_r) \end{pmatrix}

where each Jki(λi)J_{k_i}(\lambda_i) is a Jordan block. The eigenvalues λi\lambda_i may repeat.

Theorem 6.10: Uniqueness of Jordan Form

The Jordan form JJ is unique up to the ordering of blocks. That is:

  • The sizes and number of Jordan blocks are uniquely determined by AA
  • The matrix PP is NOT unique
Remark 6.4: Jordan Form vs Diagonalization

A matrix is diagonalizable if and only if all its Jordan blocks are 1×1. Jordan form generalizes diagonalization to handle all matrices.

Example 6.6: Diagonalizable Matrix

For A=(3005)A = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}:

Jordan form is J=(J1(3)J1(5))=(3005)J = \begin{pmatrix} J_1(3) & \\ & J_1(5) \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} — same as the matrix!

Example 6.7: Non-Diagonalizable Matrix

For A=(2102)A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}:

This is already in Jordan form: J=J2(2)J = J_2(2).

Eigenvalue λ=2\lambda = 2 has a=2a = 2 but g=1g = 1, so NOT diagonalizable.

3. Generalized Eigenvectors

Definition 6.7: Generalized Eigenvector

A vector vv is a generalized eigenvector of rank kk for eigenvalue λ\lambda if:

(AλI)kv=0but(AλI)k1v0(A - \lambda I)^k v = 0 \quad \text{but} \quad (A - \lambda I)^{k-1} v \neq 0

Rank 1 generalized eigenvectors are the usual eigenvectors.

Definition 6.8: Generalized Eigenspace

The generalized eigenspace for λ\lambda is:

Eλgen=ker(AλI)a(λ)={v:(AλI)a(λ)v=0}E_\lambda^{\text{gen}} = \ker(A - \lambda I)^{a(\lambda)} = \{v : (A - \lambda I)^{a(\lambda)} v = 0\}

where a(λ)a(\lambda) is the algebraic multiplicity. The dimension of EλgenE_\lambda^{\text{gen}} equals a(λ)a(\lambda).

Theorem 6.11: Jordan Chains

For a Jordan block of size kk, there exists a Jordan chain of vectors:

v1,v2,,vkv_1, v_2, \ldots, v_k

where v1v_1 is an eigenvector and:

(AλI)vi=vi1for i=2,,k(A - \lambda I)v_i = v_{i-1} \quad \text{for } i = 2, \ldots, k

with (AλI)v1=0(A - \lambda I)v_1 = 0.

Example 6.8: Finding Generalized Eigenvectors

For A=(2102)A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}:

Step 1: Find eigenvector for λ=2\lambda = 2:

(A2I)v1=0(0100)v1=0v1=(10)(A - 2I)v_1 = 0 \Rightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} v_1 = 0 \Rightarrow v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}

Step 2: Find generalized eigenvector v2v_2 with (A2I)v2=v1(A - 2I)v_2 = v_1:

(0100)v2=(10)v2=(01)\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}

Jordan chain: v1,v2v_1, v_2. Matrix P=(v1v2)=IP = (v_1 | v_2) = I.

4. Computing Jordan Form

Algorithm: Finding Jordan Form

  1. Find eigenvalues (roots of characteristic polynomial)
  2. For each eigenvalue λ\lambda:
    • Find algebraic multiplicity a(λ)a(\lambda)
    • Find geometric multiplicity g(λ)=dimker(AλI)g(\lambda) = \dim\ker(A - \lambda I)
    • Number of blocks = g(λ)g(\lambda)
  3. Determine block sizes using rank(AλI)k\text{rank}(A - \lambda I)^k for k=1,2,k = 1, 2, \ldots
  4. Find generalized eigenvectors to construct PP
Theorem 6.12: Determining Block Sizes

For eigenvalue λ\lambda, let rk=rank(AλI)kr_k = \text{rank}(A - \lambda I)^k. Then:

  • Number of blocks of size ≥ jj: rj1rjr_{j-1} - r_j
  • Number of blocks of size exactly jj: (rj1rj)(rjrj+1)(r_{j-1} - r_j) - (r_j - r_{j+1})
Example 6.9: Complete Example

Find Jordan form of A=(5421011111301112)A = \begin{pmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix}.

Step 1: χA(x)=(x1)(x2)3\chi_A(x) = (x-1)(x-2)^3

Step 2: For λ=1\lambda = 1: a=1a = 1, so one J1(1)J_1(1) block.

Step 3: For λ=2\lambda = 2: a=3a = 3. Compute g=dimker(A2I)=2g = \dim\ker(A - 2I) = 2.

So 2 blocks for λ=2\lambda = 2. Since a=3a = 3, sizes are (2, 1).

Jordan form:

J=(1000021000200002)=J1(1)J2(2)J1(2)J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} = J_1(1) \oplus J_2(2) \oplus J_1(2)

5. Powers of Jordan Blocks

Theorem 6.13: Powers of Jordan Blocks

For Jk(λ)=λI+NJ_k(\lambda) = \lambda I + N where Nk=0N^k = 0:

Jk(λ)n=j=0min(n,k1)(nj)λnjNjJ_k(\lambda)^n = \sum_{j=0}^{\min(n, k-1)} \binom{n}{j} \lambda^{n-j} N^j

Since NN is nilpotent, this is a finite sum!

Example 6.10: Powers of 2×2 Jordan Block

For J2(λ)=(λ10λ)J_2(\lambda) = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}:

J2(λ)n=(λnnλn10λn)J_2(\lambda)^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}
Example 6.11: Powers of 3×3 Jordan Block

For J3(λ)J_3(\lambda):

J3(λ)n=(λnnλn1(n2)λn20λnnλn100λn)J_3(\lambda)^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} & \binom{n}{2}\lambda^{n-2} \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix}
Corollary 6.5: Matrix Powers via Jordan Form

If A=PJP1A = PJP^{-1}, then An=PJnP1A^n = PJ^nP^{-1}. Computing JnJ^n is easy since each block is computed independently.

6. Matrix Exponentials

Definition 6.9: Matrix Exponential

The matrix exponential is defined as:

eA=k=0Akk!=I+A+A22!+A33!+e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots
Theorem 6.14: Exponential of Jordan Block

For Jk(λ)=λI+NJ_k(\lambda) = \lambda I + N:

etJk(λ)=eλtetN=eλtj=0k1tjj!Nje^{tJ_k(\lambda)} = e^{\lambda t} e^{tN} = e^{\lambda t} \sum_{j=0}^{k-1} \frac{t^j}{j!} N^j
Example 6.12: Exponential of 2×2 Jordan Block
etJ2(λ)=eλt(1t01)e^{tJ_2(\lambda)} = e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}
Example 6.13: Exponential of 3×3 Jordan Block
etJ3(λ)=eλt(1tt2/201t001)e^{tJ_3(\lambda)} = e^{\lambda t} \begin{pmatrix} 1 & t & t^2/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}
Remark 6.5: Application to Differential Equations

The solution to y=Ay\mathbf{y}' = A\mathbf{y} with y(0)=y0\mathbf{y}(0) = \mathbf{y}_0 is:

y(t)=eAty0\mathbf{y}(t) = e^{At}\mathbf{y}_0

Jordan form makes computing eAte^{At} tractable.

7. Common Mistakes

❌ 1s on wrong diagonal

Convention: 1s go on the superdiagonal (above main diagonal), NOT subdiagonal.

❌ Confusing # of blocks with block size

# of blocks = geometric multiplicity. Sum of block sizes = algebraic multiplicity.

❌ Forgetting Jordan form needs algebraically closed field

Over ℝ, a matrix with complex eigenvalues won't have Jordan form in ℝ. Need to work over ℂ.

❌ Wrong order in Jordan chains

Start with eigenvector v1v_1, then solve (AλI)vi+1=vi(A-\lambda I)v_{i+1} = v_i going UP the chain.

8. Applications

Differential Equations

Systems y=Ayy' = Ay solved via eAte^{At}. Jordan form gives explicit solutions involving tkeλtt^k e^{\lambda t}.

Stability Analysis

Equilibrium stability determined by eigenvalues. Jordan structure affects rate of approach.

Matrix Functions

f(A)=Pf(J)P1f(A) = Pf(J)P^{-1} where f(J)f(J) computed block-by-block.

Control Theory

Jordan form reveals controllability and observability structure of linear systems.

Example 6.14: Solving a System of ODEs

Solve y=(2102)y\mathbf{y}' = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \mathbf{y} with y(0)=(11)\mathbf{y}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.

Solution: AA is already in Jordan form J2(2)J_2(2).

eAt=e2t(1t01)e^{At} = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}
y(t)=e2t(1t01)(11)=e2t(1+t1)\mathbf{y}(t) = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = e^{2t} \begin{pmatrix} 1 + t \\ 1 \end{pmatrix}

9. Special Cases

Theorem 6.15: Nilpotent Matrices

A matrix NN is nilpotent (some power is zero) if and only if its Jordan form consists entirely of Jordan blocks with λ=0\lambda = 0.

Example 6.15: Jordan Form of Nilpotent

For N=(010001000)N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}:

Jordan form is J3(0)J_3(0). Note N3=0N^3 = 0.

Theorem 6.16: Idempotent Matrices

A matrix EE is idempotent (E2=EE^2 = E) if and only if its Jordan form is diagonal with eigenvalues 0 and 1 only.

Theorem 6.17: Involutions

A matrix AA is an involution (A2=IA^2 = I) if and only if its Jordan form is diagonal with eigenvalues ±1 only.

Example 6.16: Rotation Matrices

The rotation matrix Rθ=(cosθsinθsinθcosθ)R_\theta = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} over ℝ has no real eigenvalues (for θ0,π\theta \neq 0, \pi).

Over ℂ: eigenvalues e±iθe^{\pm i\theta}, Jordan form is diagonal: diag(eiθ,eiθ)\text{diag}(e^{i\theta}, e^{-i\theta}).

10. Connection to Minimal Polynomial

Theorem 6.18: Minimal Polynomial from Jordan Form

If a matrix has Jordan form with blocks Jk1(λ1),,Jkr(λr)J_{k_1}(\lambda_1), \ldots, J_{k_r}(\lambda_r), then:

mA(x)=lcm{(xλi)ki}=λ distinct(xλ)max{ki:λi=λ}m_A(x) = \text{lcm}\{(x - \lambda_i)^{k_i}\} = \prod_{\lambda \text{ distinct}} (x - \lambda)^{\max\{k_i : \lambda_i = \lambda\}}

The exponent of each factor is the size of the largest Jordan block for that eigenvalue.

Corollary 6.6: Diagonalizability Criterion

A matrix is diagonalizable if and only if its minimal polynomial has no repeated roots.

Example 6.17: Computing Minimal Polynomial

For J=J1(2)J2(2)J1(3)J = J_1(2) \oplus J_2(2) \oplus J_1(3):

Largest block for 2 is size 2; largest for 3 is size 1.

mA(x)=(x2)2(x3)m_A(x) = (x-2)^2(x-3)

Characteristic: χA(x)=(x2)3(x3)\chi_A(x) = (x-2)^3(x-3)

11. Key Takeaways

Structure

Jk(λ)=λI+NJ_k(\lambda) = \lambda I + N (nilpotent part)

Existence

Every matrix has Jordan form over ℂ

# of Blocks

= geometric multiplicity g(λ)g(\lambda)

Sum of Sizes

= algebraic multiplicity a(λ)a(\lambda)

12. Worked Examples

Example 6.18: 3×3 Matrix with Repeated Eigenvalue

Find Jordan form of A=(310030003)A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}.

Step 1: χA(x)=(x3)3\chi_A(x) = (x-3)^3, so λ=3\lambda = 3 with a=3a = 3.

Step 2: A3I=(010000000)A - 3I = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}

rank(A3I)=1\text{rank}(A-3I) = 1, so g=31=2g = 3 - 1 = 2.

Two Jordan blocks, sizes sum to 3, so: (2, 1).

J=J2(3)J1(3)=(310030003)J = J_2(3) \oplus J_1(3) = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}

In this case, A=JA = J already!

Example 6.19: Matrix with Two Distinct Eigenvalues

Find Jordan form of A=(110010002)A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.

χA=(x1)2(x2)\chi_A = (x-1)^2(x-2)

For λ=1\lambda = 1: a=2a = 2, g=1g = 1 → one J2(1)J_2(1)

For λ=2\lambda = 2: a=1a = 1, g=1g = 1 → one J1(2)J_1(2)

J=J2(1)J1(2)=(110010002)J = J_2(1) \oplus J_1(2) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}
Example 6.20: 4×4 with Multiple Blocks

If χA=(x2)4\chi_A = (x-2)^4 and g(2)=2g(2) = 2, what are possible Jordan forms?

Need 2 blocks summing to 4. Possibilities:

  • J3(2)J1(2)J_3(2) \oplus J_1(2) (sizes 3, 1)
  • J2(2)J2(2)J_2(2) \oplus J_2(2) (sizes 2, 2)

To distinguish: compute rank(A2I)2\text{rank}(A-2I)^2.

Jordan Form Quick Reference

PropertyFormula / Value
Jordan blockJk(λ)=λI+NkJ_k(\lambda) = \lambda I + N_k
# of blocks for λ= g(λ)g(\lambda) (geometric multiplicity)
Sum of block sizes for λ= a(λ)a(\lambda) (algebraic multiplicity)
Largest block size for λ= exponent in minimal polynomial
Jk(λ)nJ_k(\lambda)^nj=0k1(nj)λnjNj\sum_{j=0}^{k-1} \binom{n}{j}\lambda^{n-j}N^j
etJk(λ)e^{tJ_k(\lambda)}eλtj=0k1tjj!Nje^{\lambda t}\sum_{j=0}^{k-1}\frac{t^j}{j!}N^j
Diagonalizable iffAll blocks are 1×1

13. Challenge Problems

Challenge 1

Prove that similar matrices have the same Jordan form (up to block ordering).

Challenge 2

Find all possible Jordan forms for a 5×5 matrix with χA=(x2)3(x3)2\chi_A = (x-2)^3(x-3)^2.

Hint: Consider all partitions of 3 and 2.

Challenge 3

Prove: AA is nilpotent iff all eigenvalues are 0.

Challenge 4

If A2=AA^2 = A, show that the Jordan form of AA is diagonal.

Challenge 5

Compute etAe^{tA} for A=(010001000)A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.

14. Exam Preparation

What You Should Know

  • • Definition of Jordan blocks
  • • Jordan Normal Form Theorem
  • • How # of blocks relates to geometric mult.
  • • How to find generalized eigenvectors
  • • Computing powers of Jordan blocks
  • • Computing matrix exponentials

Common Exam Questions

  • • Find Jordan form given χA\chi_A and gg values
  • • Compute AnA^n via Jordan form
  • • Solve y=Ay\mathbf{y}' = A\mathbf{y} using Jordan form
  • • Determine if matrix is diagonalizable
  • • Find generalized eigenvectors
  • • True/False on Jordan form properties

15. Conceptual Questions

Q: Why can't we always diagonalize?

When geometric multiplicity < algebraic multiplicity, there aren't enough eigenvectors to form a basis. Jordan form compensates with generalized eigenvectors.

Q: What's special about Jordan blocks?

They're the "atomic" building blocks—you can't simplify them further while preserving the eigenvalue structure.

Q: How do 1s on superdiagonal arise geometrically?

They represent how the transformation "links" generalized eigenvectors in a chain: applying (AλI)(A-\lambda I) moves you down the chain.

Q: Why is Jordan form unique (up to block order)?

The block structure is determined by ranks of (AλI)k(A-\lambda I)^k, which are similarity invariants.

16. Additional Examples

Example 6.21: Computing e^{tA} for 3×3 Jordan

For A=J3(2)=(210021002)A = J_3(2) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}:

etA=e2t(1tt2/201t001)e^{tA} = e^{2t} \begin{pmatrix} 1 & t & t^2/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}

The polynomial terms t,t2/2t, t^2/2 come from the nilpotent part.

Example 6.22: Diagonal Blocks

For J=(200031003)=J1(2)J2(3)J = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} = J_1(2) \oplus J_2(3):

etJ=(e2t000e3tte3t00e3t)e^{tJ} = \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & e^{3t} & te^{3t} \\ 0 & 0 & e^{3t} \end{pmatrix}

Each block exponentiates independently!

Example 6.23: Finding P Matrix

For A=(5331)A = \begin{pmatrix} 5 & -3 \\ 3 & -1 \end{pmatrix}, find PP such that A=PJP1A = PJP^{-1}.

Step 1: χA=(x2)2\chi_A = (x-2)^2, so λ=2\lambda = 2 with a=2a = 2.

Step 2: A2I=(3333)A - 2I = \begin{pmatrix} 3 & -3 \\ 3 & -3 \end{pmatrix}, rank = 1, so g=1g = 1.

Jordan form: J=J2(2)J = J_2(2)

Step 3: Eigenvector: v1=(11)v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}

Step 4: Generalized eigenvector: solve (A2I)v2=v1(A-2I)v_2 = v_1

(3333)v2=(11)v2=(1/30)\begin{pmatrix} 3 & -3 \\ 3 & -3 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow v_2 = \begin{pmatrix} 1/3 \\ 0 \end{pmatrix}
P=(11/310)P = \begin{pmatrix} 1 & 1/3 \\ 1 & 0 \end{pmatrix}
Example 6.24: Solving ODE with Jordan Form

Solve x=(5331)x\mathbf{x}' = \begin{pmatrix} 5 & -3 \\ 3 & -1 \end{pmatrix}\mathbf{x}.

Using A=PJ2(2)P1A = PJ_2(2)P^{-1} from above:

eAt=PeJ2(2)tP1=P(e2tte2t0e2t)P1e^{At} = P e^{J_2(2)t} P^{-1} = P \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix} P^{-1}

General solution: x(t)=eAtx0\mathbf{x}(t) = e^{At}\mathbf{x}_0

Verification Checklist

After finding Jordan form, verify:

Sum of block sizes = n
# blocks for λ = g(λ)
Sizes for λ sum to a(λ)
1s on superdiagonal only
AP = PJ (column by column)
P is invertible

Memorization Aids

Structure

"Jordan = λI + Nilpotent"

# of Blocks

"Geometric mult = block count"

Total Size

"Algebraic mult = size sum"

Powers

"Binomial with nilpotent"

Quick Examples Gallery

Diagonal

(2003)\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}

= J1(2)J1(3)J_1(2) \oplus J_1(3)

2×2 Jordan

(2102)\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}

= J2(2)J_2(2)

Mixed

(210020003)\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}

= J2(2)J1(3)J_2(2) \oplus J_1(3)

Module Summary

Jordan Normal Form is the ultimate canonical form for matrices over algebraically closed fields. It generalizes diagonalization by allowing Jordan blocks where there aren't enough eigenvectors.

18+

Theorems

24+

Examples

8

Quiz Questions

8

FAQs

Historical Notes

Camille Jordan (1838-1922): French mathematician who developed the Jordan normal form theory in his 1870 treatise "Traité des substitutions et des équations algébriques."

Karl Weierstrass (1815-1897): Independently developed similar results around the same time, leading to the Weierstrass normal form using elementary divisors.

Leopold Kronecker: Further refined the theory with his contributions to invariant factors.

Applications: Jordan form became fundamental to linear algebra, differential equations, control theory, and quantum mechanics throughout the 20th century.

17. More Practice Problems

Problem 1

Find the Jordan form of A=(4104)A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}.

Answer: Already in Jordan form: J2(4)J_2(4)

Problem 2

If χA=(x1)2(x2)2\chi_A = (x-1)^2(x-2)^2 and g(1)=g(2)=1g(1) = g(2) = 1, find Jordan form.

Answer: J2(1)J2(2)J_2(1) \oplus J_2(2)

Problem 3

Compute J2(3)10J_2(3)^{10}.

Answer: (31010390310)\begin{pmatrix} 3^{10} & 10 \cdot 3^9 \\ 0 & 3^{10} \end{pmatrix}

Problem 4

Find all 3×3 Jordan forms with characteristic polynomial (x5)3(x-5)^3.

Answer: J3(5)J_3(5), J2(5)J1(5)J_2(5) \oplus J_1(5), or J1(5)J1(5)J1(5)J_1(5) \oplus J_1(5) \oplus J_1(5)

Problem 5

For A=J2(0)A = J_2(0), compute eAe^A.

Answer: eJ2(0)=I+J2(0)=(1101)e^{J_2(0)} = I + J_2(0) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}

18. Real vs Complex Jordan Form

Theorem 6.19: Real Jordan Form

Over ℝ, a matrix may not have Jordan form if it has complex eigenvalues. Instead, there's a real Jordan form with blocks:

  • Standard Jordan blocks Jk(λ)J_k(\lambda) for real eigenvalues
  • 2×2 rotation-scaling blocks for complex conjugate pairs
Example 6.25: Real Jordan Form

The rotation matrix R=(0110)R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} has eigenvalues ±i\pm i.

Over ℂ: Jordan form is diag(i,i)\text{diag}(i, -i).

Over ℝ: Real Jordan form is RR itself (already in real canonical form).

Remark 6.6: When to Use Which

For theoretical work, use complex Jordan form (always exists). For numerical computation with real matrices, real Jordan form avoids complex arithmetic.

19. Computational Aspects

Numerical Stability Warning

Jordan form is numerically unstable. Small perturbations can drastically change the Jordan structure. For numerical work, use Schur decomposition instead.

Theorem 6.20: Schur Decomposition

Every matrix AMn(C)A \in M_n(\mathbb{C}) can be written as A=QTQA = QTQ^* where:

  • QQ is unitary (QQ=IQ^*Q = I)
  • TT is upper triangular
  • Diagonal of TT contains the eigenvalues
Remark 6.7: Jordan vs Schur

Schur form is always numerically stable and exists for every matrix. Jordan form gives more structural information but is numerically problematic.

20. Connections to Other Topics

Primary Decomposition

The space decomposes into generalized eigenspaces: V=λEλgenV = \bigoplus_{\lambda} E_\lambda^{\text{gen}}. Each generalized eigenspace further decomposes into Jordan chains.

Invariant Factors

Jordan form is equivalent to the theory of invariant factors and elementary divisors for finitely generated modules over PIDs.

Rational Canonical Form

An alternative canonical form that works over any field (not just algebraically closed). Uses companion matrices instead of Jordan blocks.

Jordan Form Decision Tree

Step 1: Find eigenvalues

Solve det(AλI)=0\det(A - \lambda I) = 0

Step 2: For each eigenvalue, find multiplicities

a(λ)a(\lambda) = algebraic mult (power in char poly)

g(λ)g(\lambda) = geometric mult (nrank(AλI)n - \text{rank}(A-\lambda I))

Step 3: Determine block structure

# blocks for λ = g(λ)g(\lambda)

Sum of sizes = a(λ)a(\lambda)

Step 4: Find exact block sizes (if needed)

Use rank(AλI)k\text{rank}(A-\lambda I)^k for k=1,2,k = 1, 2, \ldots

Step 5: Find P matrix (if needed)

Build Jordan chains: eigenvector → generalized eigenvectors

21. Advanced Topics

Theorem 6.21: Matrix Logarithm

If AA has no eigenvalues on the negative real axis, then log(A)\log(A) exists. For Jordan form:

log(Jk(λ))=log(λ)I+j=1k1(1)j+1jλjNj\log(J_k(\lambda)) = \log(\lambda)I + \sum_{j=1}^{k-1} \frac{(-1)^{j+1}}{j\lambda^j} N^j
Theorem 6.22: Square Root of Matrix

If AA has no non-positive real eigenvalues, then A1/2A^{1/2} exists and is unique among matrices with positive real part eigenvalues.

Example 6.26: Square Root of Jordan Block

For J2(4)=(4104)J_2(4) = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}:

J2(4)1/2=(21/402)J_2(4)^{1/2} = \begin{pmatrix} 2 & 1/4 \\ 0 & 2 \end{pmatrix}

Verify: (21/402)2=(4104)\begin{pmatrix} 2 & 1/4 \\ 0 & 2 \end{pmatrix}^2 = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}

Remark 6.8: Matrix Functions in General

For any analytic function ff and Jordan block Jk(λ)J_k(\lambda):

f(Jk(λ))=(f(λ)f(λ)f(λ)2!0f(λ)f(λ)0f(λ))f(J_k(\lambda)) = \begin{pmatrix} f(\lambda) & f'(\lambda) & \frac{f''(\lambda)}{2!} & \cdots \\ 0 & f(\lambda) & f'(\lambda) & \cdots \\ \vdots & & \ddots & \\ 0 & & & f(\lambda) \end{pmatrix}

The superdiagonal entries involve derivatives of ff at λ\lambda!

Jordan Form Examples Gallery

Char Polyg valuesJordan Form
(x2)(x3)(x-2)(x-3)g(2)=1, g(3)=1J1(2)J1(3)J_1(2) \oplus J_1(3)
(x2)2(x-2)^2g(2)=2J1(2)J1(2)J_1(2) \oplus J_1(2)
(x2)2(x-2)^2g(2)=1J2(2)J_2(2)
(x1)3(x-1)^3g(1)=1J3(1)J_3(1)
(x1)3(x-1)^3g(1)=2J2(1)J1(1)J_2(1) \oplus J_1(1)
(x1)3(x-1)^3g(1)=3J1(1)3J_1(1)^{\oplus 3}

Final Summary

In this comprehensive module on Jordan Normal Form, you learned:

  • Jordan blocks Jk(λ)=λI+NJ_k(\lambda) = \lambda I + N are the atomic building blocks
  • Every matrix over ℂ has a unique Jordan form (up to block ordering)
  • # of blocks = geometric multiplicity, sum of sizes = algebraic multiplicity
  • Generalized eigenvectors form Jordan chains
  • Powers and exponentials computed via binomial expansion with nilpotent
  • Applications to differential equations, stability, and matrix functions

Study Tips

  • Start with diagonalization: If g=ag = a for all eigenvalues, you're done—it's diagonal!
  • Count blocks first: # blocks = geometric multiplicity. This is the easy part.
  • Remember the formula: J=λI+NJ = \lambda I + N where NN is nilpotent.
  • Practice 2×2 and 3×3: Master small cases before tackling larger matrices.
  • Use powers formula: Jn=(nk)λnkNkJ^n = \sum \binom{n}{k}\lambda^{n-k}N^k with Nk=0N^k = 0 eventually.
  • For exponentials: etJ=eλt(I+tN+t22N2+)e^{tJ} = e^{\lambda t}(I + tN + \frac{t^2}{2}N^2 + \cdots) is finite!
  • Verify your answer: Check that AP = PJ column by column.

Learning Path

Previous

6.3 Diagonalization

Current

6.4 Jordan Normal Form

Next

6.5 Cayley-Hamilton

What's Next?

With Jordan form mastered, you're ready for:

  • Cayley-Hamilton Theorem: Every matrix satisfies its own characteristic polynomial: χA(A)=0\chi_A(A) = 0
  • Inner Product Spaces: Spectral theorem for symmetric/Hermitian matrices—orthogonal diagonalization
  • Matrix Functions: Computing f(A)f(A) for general analytic functions using Jordan form
  • Differential Equations: Solving systems y=Ay\mathbf{y}' = A\mathbf{y} with non-diagonalizable coefficient matrices

Related Topics

Diagonalization
Nilpotent Matrices
Minimal Polynomial
Matrix Exponential
Generalized Eigenvectors
Cayley-Hamilton
Schur Decomposition
Similarity
Jordan Form Practice
8
Questions
0
Correct
0%
Accuracy
1
A Jordan block Jk(λ)J_k(\lambda) has:
Easy
Not attempted
2
Every matrix over C\mathbb{C} has:
Easy
Not attempted
3
(J2(λ))2=(J_2(\lambda))^2 =
Hard
Not attempted
4
Number of Jordan blocks for λ\lambda equals:
Medium
Not attempted
5
If J3(0)J_3(0) is the Jordan block with λ=0\lambda=0, then J3(0)3=J_3(0)^3 =
Medium
Not attempted
6
The minimal polynomial of Jk(λ)J_k(\lambda) is:
Medium
Not attempted
7
A 4×4 matrix with eigenvalue 2 (a=4, g=2) has Jordan form:
Hard
Not attempted
8
eJ2(0)=e^{J_2(0)} =
Hard
Not attempted

Frequently Asked Questions

When do I need Jordan form?

When a matrix isn't diagonalizable (i.e., geometric multiplicity < algebraic multiplicity for some eigenvalue). Jordan form is the 'best possible' canonical form for any matrix over ℂ.

What's a generalized eigenvector?

v is a generalized eigenvector of rank k if (A - λI)^k v = 0 but (A - λI)^{k-1} v ≠ 0. These form Jordan chains that give bases for generalized eigenspaces.

Is Jordan form unique?

Yes, the Jordan blocks are unique up to ordering. However, the change-of-basis matrix P is not unique—there's freedom in choosing generalized eigenvectors.

How do I compute e^{tJ}?

For Jordan block J = λI + N: e^{tJ} = e^{λt}e^{tN}. Since N is nilpotent (Nᵏ=0), e^{tN} = I + tN + t²N²/2! + ... is a finite polynomial.

What determines the number of Jordan blocks?

For each eigenvalue λ, the number of Jordan blocks equals the geometric multiplicity g(λ). The sizes of blocks are determined by the ranks of (A-λI)^k.

Why does Jordan form exist over ℂ but not always over ℝ?

Jordan form requires the characteristic polynomial to split into linear factors. Over ℂ (algebraically closed), every polynomial splits. Over ℝ, complex eigenvalues prevent this.

How is Jordan form related to diagonalization?

A matrix is diagonalizable iff all its Jordan blocks are 1×1. Jordan form generalizes diagonalization by allowing blocks of size >1 when there aren't enough eigenvectors.

What's the connection to differential equations?

For y' = Ay, the solution involves e^{At}. Jordan form makes computing e^{At} tractable: e^{PJP⁻¹t} = Pe^{Jt}P⁻¹, and e^{Jt} has a nice form.