MathIsimple
← Back to Statistics Calculators

Markov Chain Multi-Step Transition Calculator

Calculate n-step transition probabilities using Chapman-Kolmogorov equations: P⁽ⁿ⁾ = Pⁿ

Matrix Powers
Chapman-Kolmogorov
Multi-Step Analysis
Markov Chain Configuration
Set up your Markov chain parameters and transition matrix
P0:
P1:
About Multi-Step Transitions

Chapman-Kolmogorov Equations

The fundamental equations for computing multi-step transition probabilities:

pij(u+v)=kIpik(u)pkj(v)p_{ij}^{(u+v)} = \sum_{k \in I} p_{ik}^{(u)} p_{kj}^{(v)}

In matrix form: P(u+v)=P(u)P(v)P^{(u+v)} = P^{(u)} \cdot P^{(v)}

Matrix Powers

The n-step transition matrix is simply the n-th power of the one-step matrix:

P(n)=Pn=P×P××Pn timesP^{(n)} = P^n = \underbrace{P \times P \times \cdots \times P}_{n \text{ times}}

Applications

  • Predicting long-term system behavior
  • Analyzing convergence to stationary distribution
  • Computing absorption probabilities
  • Weather forecasting and stock price modeling
Learn More About Markov Chains
Back to Statistics CalculatorsLearn Markov Chains