MathIsimple

Stochastic Process Fundamentals

Essential Formulas & Mathematical References

Complete collection of formulas for stochastic process definitions, classification, numerical characteristics, and special processes

KaTeX RenderedReady to UseComprehensive Reference
1. Stochastic Process Definition
Fundamental mathematical definition and structure

Basic Definition

A stochastic process with parameter set TT and sample space SS:

{X(t,ω);tT,ωS} or {X(t);tT}\{X(t,\omega); t \in T, \omega \in S\} \text{ or } \{X(t); t \in T\}
State Space

Set of all possible values:

I={x:X(t)=x possible}I = \{x : X(t) = x \text{ possible}\}
Sample Function

Fixed outcome realization:

x(t)=X(t,ω0)x(t) = X(t,\omega_0)
2. Process Classification Criteria
Classification based on parameter set and state space properties
Parameter Set Classification
Discrete Time: T={t1,t2,}T = \{t_1, t_2, \ldots\}
Continuous Time: T=[a,b]T = [a,b] or T=RT = \mathbb{R}
State Space Classification
Discrete State: II at most countable
Continuous State: II is an interval
Four Standard Categories
1. Discrete T, Discrete I
2. Discrete T, Continuous I
3. Continuous T, Discrete I
4. Continuous T, Continuous I
3. Finite-Dimensional Distribution Functions
Complete statistical characterization through distribution families
One-Dimensional Distribution
FX(x;t)=P{X(t)x},xR,tTF_X(x;t) = P\{X(t) \leq x\}, \quad x \in \mathbb{R}, t \in T

Family: {FX(x;t);tT}\{F_X(x;t); t \in T\}

n-Dimensional Distribution
FX(x1,,xn;t1,,tn)=P{X(t1)x1,,X(tn)xn}F_X(x_1,\ldots,x_n;t_1,\ldots,t_n) = P\{X(t_1) \leq x_1, \ldots, X(t_n) \leq x_n\}

where n2n \geq 2, t1,,tnTt_1, \ldots, t_n \in T distinct, x1,,xnRx_1, \ldots, x_n \in \mathbb{R}

Compatibility Conditions
Marginal Consistency:
limxn+FX(x1,,xn;t1,,tn)=FX(x1,,xn1;t1,,tn1)\lim_{x_n \to +\infty} F_X(x_1,\ldots,x_n;t_1,\ldots,t_n) = F_X(x_1,\ldots,x_{n-1};t_1,\ldots,t_{n-1})
Permutation Invariance: Distribution unchanged under reordering of time indices
4. Numerical Characteristics
Essential statistical functions for process description
Mean Function
μX(t)=E[X(t)]\mu_X(t) = E[X(t)]

Average level at time tt

Mean Square Function
ψX(t)=E[X2(t)]\psi_X(t) = E[X^2(t)]

Second moment at time tt

Variance Function
σX2(t)=Var[X(t)]=E[(X(t)μX(t))2]=ψX(t)[μX(t)]2\sigma_X^2(t) = \text{Var}[X(t)] = E[(X(t) - \mu_X(t))^2] = \psi_X(t) - [\mu_X(t)]^2

Fluctuation measure around mean at time tt

Autocorrelation Function
RX(t1,t2)=E[X(t1)X(t2)],t1,t2TR_X(t_1,t_2) = E[X(t_1)X(t_2)], \quad t_1,t_2 \in T

Linear correlation between values at different times

Special case: RX(t,t)=ψX(t)R_X(t,t) = \psi_X(t)
Autocovariance Function
CX(t1,t2)=Cov(X(t1),X(t2))=RX(t1,t2)μX(t1)μX(t2)C_X(t_1,t_2) = \text{Cov}(X(t_1),X(t_2)) = R_X(t_1,t_2) - \mu_X(t_1)\mu_X(t_2)

Correlation after removing mean effects

Special case: CX(t,t)=σX2(t)C_X(t,t) = \sigma_X^2(t)
5. Second-Order Moment Processes
Processes with finite second moments and their properties
Definition

{X(t);tT}\{X(t); t \in T\} is a second-order moment process if:

E[X2(t)]<,tTE[X^2(t)] < \infty, \quad \forall t \in T
Cauchy-Schwarz Guarantee

For second-order processes, autocorrelation function exists:

[EX(t1)X(t2)]2E[X2(t1)]E[X2(t2)]<[E|X(t_1)X(t_2)|]^2 \leq E[X^2(t_1)]E[X^2(t_2)] < \infty
6. Gaussian (Normal) Processes
Special properties and complete characterization
Definition

{X(t);tT}\{X(t); t \in T\} is Gaussian if for any n1n \geq 1 and times t1,,tnTt_1, \ldots, t_n \in T:

(X(t1),X(t2),,X(tn))Nn(μ,Σ)(X(t_1), X(t_2), \ldots, X(t_n)) \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})

where μ=(μX(t1),,μX(tn))\boldsymbol{\mu} = (\mu_X(t_1), \ldots, \mu_X(t_n)) and Σij=CX(ti,tj)\boldsymbol{\Sigma}_{ij} = C_X(t_i, t_j)

Complete Characterization

All statistical properties determined by:

• Mean function: μX(t)\mu_X(t)
• Autocovariance: CX(t1,t2)C_X(t_1,t_2)
Key Properties
1. Linear Transformation: If Y(t)=aiX(ti)Y(t) = \sum a_i X(t_i), then {Y(t)}\{Y(t)\} is Gaussian
2. Independence Equivalence: CX(t1,t2)=0X(t1)X(t2)C_X(t_1,t_2) = 0 \Leftrightarrow X(t_1) \perp X(t_2)
7. Two-Dimensional Processes & Cross-Relationships
Joint processes and inter-process relationships
Cross-Correlation Function
RXY(t1,t2)=E[X(t1)Y(t2)],RYX(t1,t2)=E[Y(t1)X(t2)]R_{XY}(t_1,t_2) = E[X(t_1)Y(t_2)], \quad R_{YX}(t_1,t_2) = E[Y(t_1)X(t_2)]

Linear correlation between different processes

Cross-Covariance Function
CXY(t1,t2)=Cov(X(t1),Y(t2))=RXY(t1,t2)μX(t1)μY(t2)C_{XY}(t_1,t_2) = \text{Cov}(X(t_1),Y(t_2)) = R_{XY}(t_1,t_2) - \mu_X(t_1)\mu_Y(t_2)

Correlation after removing mean effects

Uncorrelatedness Condition

Processes X(t)X(t) and Y(t)Y(t) are uncorrelated if:

CXY(t1,t2)=0,t1,t2TC_{XY}(t_1,t_2) = 0, \quad \forall t_1,t_2 \in T
Sum Process Characteristics

For Z(t)=X(t)+Y(t)Z(t) = X(t) + Y(t) with uncorrelated X(t)X(t) and Y(t)Y(t):

μZ(t)=μX(t)+μY(t)\mu_Z(t) = \mu_X(t) + \mu_Y(t)
CZ(t1,t2)=CX(t1,t2)+CY(t1,t2)C_Z(t_1,t_2) = C_X(t_1,t_2) + C_Y(t_1,t_2)
Quick Reference Summary
Key Relationships
  • σX2(t)=RX(t,t)[μX(t)]2\sigma_X^2(t) = R_X(t,t) - [\mu_X(t)]^2
  • CX(t,t)=σX2(t)C_X(t,t) = \sigma_X^2(t)
  • RX(t,t)=ψX(t)=E[X2(t)]R_X(t,t) = \psi_X(t) = E[X^2(t)]
Process Types
  • • Second-order: E[X2(t)]<E[X^2(t)] < \infty
  • • Gaussian: All finite-dim. dists. are normal
  • • Uncorrelated: CXY(t1,t2)=0C_{XY}(t_1,t_2) = 0
Apply These Formulas

Practice Problems

Apply these formulas with step-by-step solutions and detailed explanations.

Start Practice

Learn Theory

Understand the concepts behind these formulas with detailed explanations.

Learn More

Use Calculators

Practice calculations with interactive probability calculators and tools.

Try Calculators

Master the fundamentals