MathIsimple
Back to Stochastic Processes Formulas

Poisson Processes Formulas

Essential formulas and properties for Poisson processes, including increment probabilities, event timing distributions, and key mathematical relationships.

Core Definitions
Fundamental characterizations of Poisson processes

Definition 1: Increment Probability

PN(t+h)N(t)=1=lambdah+o(h)P\\{N(t+h) - N(t) = 1\\} = \\lambda h + o(h)
PN(t+h)N(t)geq2=o(h)P\\{N(t+h) - N(t) \\geq 2\\} = o(h)

For small time intervals h, the probability of exactly one event is approximately λh

Definition 2: Increment Distribution

N(t)N(s)simtextPoisson(lambda(ts))N(t) - N(s) \\sim \\text{Poisson}(\\lambda(t-s))

The increment over time interval (s, t] follows Poisson distribution

Initial Condition

N(0)=0N(0) = 0

Process starts with no events at time t = 0

Core Properties
Fundamental properties and relationships

Mean and Variance

E[N(t)]=lambdatE[N(t)] = \\lambda t
textVar[N(t)]=lambdat\\text{Var}[N(t)] = \\lambda t

Both mean and variance grow linearly with time

Covariance Function

textCov[N(s),N(t)]=lambdamin(s,t)\\text{Cov}[N(s), N(t)] = \\lambda \\min(s, t)

Covariance depends only on the earlier time point

Autocorrelation Function

RN(s,t)=lambdamin(s,t)+lambda2stR_N(s, t) = \\lambda \\min(s, t) + \\lambda^2 st

Autocorrelation combines covariance and mean product

Key Distributions
Important probability distributions in Poisson processes

Event Occurrence Time W_n

WnsimGamma(n,lambda)W_n \\sim \\Gamma(n, \\lambda)
fWn(t)=fraclambdantn1(n1)!elambdatf_{W_n}(t) = \\frac{\\lambda^n t^{n-1}}{(n-1)!}e^{-\\lambda t}
E[Wn]=fracnlambda,quadtextVar[Wn]=fracnlambda2E[W_n] = \\frac{n}{\\lambda}, \\quad \\text{Var}[W_n] = \\frac{n}{\\lambda^2}

Time to n-th event follows gamma distribution

Time Interval T_n

TnsimtextExp(lambda)T_n \\sim \\text{Exp}(\\lambda)
fTn(t)=lambdaelambdatf_{T_n}(t) = \\lambda e^{-\\lambda t}
FTn(t)=1elambdatF_{T_n}(t) = 1 - e^{-\\lambda t}

Time between consecutive events follows exponential distribution

Conditional Distribution

PN(s)=mmidN(t)=n=binomnmleft(fracstright)mleft(1fracstright)nmP\\{N(s) = m \\mid N(t) = n\\} = \\binom{n}{m}\\left(\\frac{s}{t}\\right)^m\\left(1-\\frac{s}{t}\\right)^{n-m}

Given total events, distribution over sub-intervals is binomial

Advanced Properties
Synthesis, decomposition, and non-homogeneous processes

Process Synthesis

N(t)=N1(t)+N2(t)simtextPoisson(lambda1+lambda2)N(t) = N_1(t) + N_2(t) \\sim \\text{Poisson}(\\lambda_1 + \\lambda_2)

Sum of independent Poisson processes is Poisson with summed intensity

Process Decomposition

N1(t)simtextPoisson(lambdap),quadN2(t)simtextPoisson(lambda(1p))N_1(t) \\sim \\text{Poisson}(\\lambda p), \\quad N_2(t) \\sim \\text{Poisson}(\\lambda(1-p))

Poisson process can be split into independent sub-processes

Non-Homogeneous Process

N(t)N(s)simtextPoissonleft(intstlambda(u)duright)N(t) - N(s) \\sim \\text{Poisson}\\left(\\int_s^t \\lambda(u) du\\right)
E[N(t)]=int0tlambda(u)duE[N(t)] = \\int_0^t \\lambda(u) du

For time-varying intensity, use cumulative intensity function

Applications and Examples
Practical applications and computational examples

Service Systems

Customer Arrivals: λ = customers per hour

Probability: P{arrivals in 2 hours = 5}

PN(2)=5=frac(2lambda)55!e2lambdaP\\{N(2) = 5\\} = \\frac{(2\\lambda)^5}{5!}e^{-2\\lambda}

Waiting Time: Time to 3rd customer

Distribution: W₃ ~ Γ(3, λ)

Communication Systems

Packet Arrivals: λ = packets per second

Inter-arrival: T ~ Exp(λ)

Queue Length: N(t) at time t

Mean: E[N(t)] = λt