MathIsimple
Lesson 1.1: Parameterized Linear Systems & 3-Variable Elimination

Master Advanced Linear Systems with Parameters

Dive deep into parameterized linear systems! Learn to classify solutions by parameter values, master 3-variable elimination techniques, and interpret geometric meanings. Develop systematic approaches to handle complex constraints and real-world modeling scenarios.

Learning Objectives

Classify solution types by parameter conditions
Apply systematic elimination to 3-variable systems
Interpret geometric meaning of solutions
Evaluate solutions under real constraints
Use equivalence transformations (A-REI.5/6)
Apply to real-world modeling problems

Core Concepts & Theoretical Foundation

Parameterized Systems Classification

For a system {ax+by=cdx+ey=f\begin{cases} ax + by = c \\ dx + ey = f \end{cases} with parameters:

Unique Solution: When aebd0ae - bd \neq 0 (determinant ≠ 0)

No Solution: When aebd=0ae - bd = 0 but afcd0af - cd \neq 0

Infinitely Many Solutions: When aebd=0ae - bd = 0 and afcd=0af - cd = 0

Geometric Interpretation Theorem

Theorem: The solution set of a linear system corresponds to the intersection of geometric objects:

2-variable system: Intersection of two lines in the plane

3-variable system: Intersection of three planes in 3D space

Unique solution: Single point of intersection

No solution: Parallel objects (no intersection)

Infinitely many: Objects coincide or intersect along a line

Elimination Strategy for 3-Variable Systems

Systematic Approach:

1. Choose elimination variable: Select variable with simplest coefficients

2. Create 2-variable system: Use two equations to eliminate chosen variable

3. Solve reduced system: Find values for remaining two variables

4. Back-substitute: Use found values to determine eliminated variable

5. Verify solution: Check all three original equations

Detailed Worked Examples

Example 1: Parameterized 2-Variable System

Solve the system {ax+y=3x+ay=1\begin{cases} ax + y = 3 \\ x + ay = 1 \end{cases} and classify solutions by parameter aa.

Step 1: Apply elimination method

Multiply first equation by aa: a2x+ay=3aa^2x + ay = 3a

Subtract second equation: (a2x+ay)(x+ay)=3a1(a^2x + ay) - (x + ay) = 3a - 1

Simplify: (a21)x=3a1(a^2 - 1)x = 3a - 1

Step 2: Classify by parameter values

Case 1: a21a^2 \neq 1 (i.e., a±1a \neq \pm 1)

x=3a1a21=3a1(a1)(a+1)x = \frac{3a - 1}{a^2 - 1} = \frac{3a - 1}{(a-1)(a+1)}

• Substitute into first equation: y=3a3a1a21=a3a21y = 3 - a \cdot \frac{3a - 1}{a^2 - 1} = \frac{a - 3}{a^2 - 1}

Result: Unique solution (3a1a21,a3a21)\left(\frac{3a-1}{a^2-1}, \frac{a-3}{a^2-1}\right)

Case 2: a=1a = 1

• System becomes: {x+y=3x+y=1\begin{cases} x + y = 3 \\ x + y = 1 \end{cases}

Result: No solution (contradiction)

Case 3: a=1a = -1

• System becomes: {x+y=3xy=1\begin{cases} -x + y = 3 \\ x - y = 1 \end{cases}

Result: No solution (contradiction)

Geometric Interpretation: When a±1a \neq \pm 1, the lines intersect at a unique point. When a=±1a = \pm 1, the lines are parallel (no intersection).

Example 2: 3-Variable System with Systematic Elimination

Solve the system: {x+2yz=42xy+z=1x+y+2z=3\begin{cases} x + 2y - z = 4 \\ 2x - y + z = 1 \\ -x + y + 2z = 3 \end{cases}

Step 1: Choose elimination variable (z)

Add equations 1 and 2: (x+2yz)+(2xy+z)=4+1(x + 2y - z) + (2x - y + z) = 4 + 1

Result: 3x+y=53x + y = 5 ... (Equation A)

Multiply equation 2 by 2: 4x2y+2z=24x - 2y + 2z = 2

Add to equation 3: (4x2y+2z)+(x+y+2z)=2+3(4x - 2y + 2z) + (-x + y + 2z) = 2 + 3

Result: 3xy+4z=53x - y + 4z = 5 ... (Equation B)

Step 2: Solve 2-variable system

Add equations A and B: (3x+y)+(3xy+4z)=5+5(3x + y) + (3x - y + 4z) = 5 + 5

Simplify: 6x+4z=106x + 4z = 103x+2z=53x + 2z = 5

From equation A: y=53xy = 5 - 3x

Step 3: Express in terms of one variable

Let x=tx = t, then:

z=53t2z = \frac{5 - 3t}{2}

y=53ty = 5 - 3t

Step 4: Find specific solution

Substitute t=1t = 1: x=1,y=2,z=1x = 1, y = 2, z = 1

Verify: 1+2(2)1=41 + 2(2) - 1 = 4 ✓, 2(1)2+1=12(1) - 2 + 1 = 1 ✓, 1+2+2(1)=3-1 + 2 + 2(1) = 3

Solution: (x,y,z)=(1,2,1)(x, y, z) = (1, 2, 1). This represents the unique intersection point of three planes in 3D space.

Example 3: Real-World Constraint Analysis

A restaurant uses chicken (C), vegetables (V), and rice (R) to make meal packages. Package 1: 2C + 3V + 1R, Package 2: 3C + 5V + 2R, Package 3: 4C + 7V + 3R. Available: 60 units chicken, 95 units vegetables. Find maximum packages and rice needed.

Step 1: Set up system

Let k1,k2,k3k_1, k_2, k_3 = number of packages 1, 2, 3

Chicken constraint: 2k1+3k2+4k3602k_1 + 3k_2 + 4k_3 \leq 60

Vegetable constraint: 3k1+5k2+7k3953k_1 + 5k_2 + 7k_3 \leq 95

Non-negativity: k1,k2,k30k_1, k_2, k_3 \geq 0

Step 2: Find feasible solutions

If only Package 1: k1min(602,953)=min(30,31.67)=30k_1 \leq \min(\frac{60}{2}, \frac{95}{3}) = \min(30, 31.67) = 30

If only Package 2: k2min(603,955)=min(20,19)=19k_2 \leq \min(\frac{60}{3}, \frac{95}{5}) = \min(20, 19) = 19

If only Package 3: k3min(604,957)=min(15,13.57)=13k_3 \leq \min(\frac{60}{4}, \frac{95}{7}) = \min(15, 13.57) = 13

Step 3: Mixed strategy analysis

Try k1=10,k2=10k_1 = 10, k_2 = 10:

Chicken used: 2(10)+3(10)=50602(10) + 3(10) = 50 \leq 60

Vegetables used: 3(10)+5(10)=80953(10) + 5(10) = 80 \leq 95

Remaining: 10 chicken, 15 vegetables

Can add: k3=min(104,157)=2k_3 = \min(\frac{10}{4}, \frac{15}{7}) = 2 more packages

Step 4: Calculate rice requirement

Total rice needed: 1(10)+2(10)+3(2)=361(10) + 2(10) + 3(2) = 36 units

Optimal Solution: 10 Package 1, 10 Package 2, 2 Package 3. Total: 22 packages, requiring 36 units of rice.

Advanced Techniques & Problem-Solving Strategies

Matrix Approach to Parameter Analysis

For system {ax+by=cdx+ey=f\begin{cases} ax + by = c \\ dx + ey = f \end{cases}, the coefficient matrix is:

[abde]\begin{bmatrix} a & b \\ d & e \end{bmatrix}

The determinant det=aebd\det = ae - bd determines solution type:

  • det0\det \neq 0 → Unique solution
  • det=0\det = 0 → No solution or infinitely many

Cramer's Rule for Parameterized Systems

When det0\det \neq 0, solutions are:

x=detxdet=cebfaebdx = \frac{\det_x}{\det} = \frac{ce - bf}{ae - bd}

y=detydet=afcdaebdy = \frac{\det_y}{\det} = \frac{af - cd}{ae - bd}

This provides direct formulas for parameterized solutions.

Geometric Visualization Strategy

For 3-variable systems, visualize plane intersections:

Three planes intersect at point: Unique solution

Two planes parallel, third intersects both: No solution

All three planes parallel: No solution

Three planes intersect along line: Infinitely many solutions

All three planes identical: Infinitely many solutions

Common Pitfalls & Error Prevention

Pitfall 1: Division by Zero in Parameters

Error: Dividing by a21a^2 - 1 without checking if a=±1a = \pm 1.

Solution: Always check parameter values that make denominators zero before dividing.

Pitfall 2: Inconsistent Elimination Order

Error: Randomly choosing which variable to eliminate first in 3-variable systems.

Solution: Choose the variable with the simplest coefficients to minimize arithmetic errors.

Pitfall 3: Ignoring Real-World Constraints

Error: Accepting negative solutions for quantities that must be positive.

Solution: Always check if solutions make sense in the given context.

Pitfall 4: Forgetting to Verify Solutions

Error: Not checking that found solutions satisfy all original equations.

Solution: Always substitute back into all original equations to verify.

Comprehensive Practice Problems

Problem 1: Parameter Analysis

For what values of kk does the system {(k+1)x+2y=32x+(k+1)y=1\begin{cases} (k+1)x + 2y = 3 \\ 2x + (k+1)y = 1 \end{cases} have:

a) A unique solution?

b) No solution?

c) Infinitely many solutions?

Show Solution

Step 1: Calculate determinant: det=(k+1)24=k2+2k3=(k+3)(k1)\det = (k+1)^2 - 4 = k^2 + 2k - 3 = (k+3)(k-1)

Step 2: For unique solution: det0\det \neq 0k3,1k \neq -3, 1

Step 3: For no/infinitely many solutions: det=0\det = 0k=3k = -3 or k=1k = 1

Step 4: Check each case to determine which gives no solution vs. infinitely many.

Problem 2: 3-Variable System

Solve: {x+2y+3z=62x+5y+2z=46x3y+z=2\begin{cases} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \\ 6x - 3y + z = 2 \end{cases}

Show Solution

Strategy: Eliminate x first using equations 1 and 2, then 1 and 3.

Step 1: 2(1)(2):y+4z=82(1) - (2): -y + 4z = 8

Step 2: 6(1)(3):15y+17z=346(1) - (3): 15y + 17z = 34

Step 3: Solve the 2-variable system to find y and z, then back-substitute for x.

Problem 3: Real-World Application

A factory produces three products A, B, C using resources X, Y, Z. Product A uses (2,1,3) units, Product B uses (1,3,2) units, Product C uses (3,2,1) units. Available resources: (100, 120, 90) units. Find the maximum number of each product that can be produced.

Show Solution

Constraints:

2a+b+3c1002a + b + 3c \leq 100 (Resource X)

a+3b+2c120a + 3b + 2c \leq 120 (Resource Y)

3a+2b+c903a + 2b + c \leq 90 (Resource Z)

Strategy: Use linear programming or find intersection points of constraint boundaries.

Problem 4: Advanced Parameter System

Consider the system: {ax+by=cbx+ay=d\begin{cases} ax + by = c \\ bx + ay = d \end{cases} where aba \neq b. Express the solution in terms of a, b, c, d and interpret geometrically.

Show Solution

Solution:

x=acbda2b2=acbd(ab)(a+b)x = \frac{ac - bd}{a^2 - b^2} = \frac{ac - bd}{(a-b)(a+b)}

y=adbca2b2=adbc(ab)(a+b)y = \frac{ad - bc}{a^2 - b^2} = \frac{ad - bc}{(a-b)(a+b)}

Geometric meaning: The lines have slopes ab-\frac{a}{b} and ba-\frac{b}{a}, which are negative reciprocals when aba \neq b, ensuring they intersect at a unique point.