MathIsimple
Lesson 2.3: Quadratic Functions: Graphs & Features

Parabolas, Vertices, and Symmetry

Understand y = ax² + bx + c and y = a(x - h)² + k. Determine axis of symmetry, vertex, zeros, and whether the vertex is a max or min.

Learning Objectives

  • Identify standard and vertex forms
  • Find axis of symmetry and vertex
  • Determine zeros and intercepts
  • Interpret max/min and context

Forms & Features

Standard form: y=ax2+bx+cy=ax^2+bx+c. Axis: x=b2ax=-\dfrac{b}{2a}.

Vertex form: y=a(xh)2+ky=a(x-h)^2+k. Vertex at (h, k)(h,\ k). If a>0a>0 open up (min), if a<0a<0 open down (max).

Completing square (derive vertex form): y=ax2+bx+c=a(x2+bax)+cy=ax^2+bx+c=a\Big(x^2+\tfrac{b}{a}x\Big)+c, add and subtract (b2a)2(\tfrac{b}{2a})^2: y=a(x+b2a)2+(cb24a)y=a\Big(x+\tfrac{b}{2a}\Big)^2+\Big(c-\tfrac{b^2}{4a}\Big) → vertex (h,k)=(b2a, cb24a)(h,k)=(-\tfrac{b}{2a},\ c-\tfrac{b^2}{4a}).

Zeros & discriminant: Solve ax2+bx+c=0ax^2+bx+c=0 → roots depend on Δ=b24ac\Delta=b^2-4ac: Δ>0\Delta>0 two real zeros, Δ=0\Delta=0 one real (double) zero, Δ<0\Delta<0 no real zeros.

Intercepts: y-intercept at (0,c)(0,c); x-intercepts are roots of ax2+bx+c=0ax^2+bx+c=0 when they exist.

Advanced Worked Examples

A) Convert to Vertex Form & Identify Features

Given y=3x212x+7y=3x^2-12x+7, write in vertex form; find axis, vertex, min value, and y-intercept.

Complete square: y=3[x24x]+7=3[(x2)24]+7=3(x2)212+7=3(x2)25y=3\big[x^2-4x\big]+7=3\big[(x-2)^2-4\big]+7=3(x-2)^2-12+7=3(x-2)^2-5

Axis: x=2x=2; Vertex: (2,5)(2,-5); min value 5-5 (since a=3>0a=3>0).

y-intercept: set x=0x=0y=7y=7(0,7)(0,7)

B) Find Zeros & Factor

For y=x25x+6y=x^2-5x+6, find zeros and intercepts; factor if possible.

Factor: x25x+6=(x2)(x3)x^2-5x+6=(x-2)(x-3)

Zeros: x=2, 3x=2,\ 3 → x-intercepts (2,0),(3,0)(2,0),(3,0); y-intercept (0,6)(0,6)

C) Projectile Height Model

A ball is launched: h(t)=16t2+32t+5h(t)=-16t^2+32t+5 (feet). Find time to reach max height and the max height.

Axis t=b2a=322(16)=1t=-\tfrac{b}{2a}=\tfrac{-32}{2(-16)}=1 s

Max height h(1)=16+32+5=21h(1)=-16+32+5=21 ft

D) Discriminant Insight

For y=2x2+4x+5y=2x^2+4x+5, determine whether the graph crosses the x-axis.

Δ=b24ac=1640=24<0\Delta=b^2-4ac=16-40=-24<0 → no real zeros → no x-intercepts; always above x-axis since a>0a>0 and vertex y > 0.

Common Pitfalls

  • Forgetting to factor out aa before completing the square when a1a\ne 1.
  • Misreading axis formula sign: axis is x=b2ax=-\tfrac{b}{2a}, not b2a\tfrac{b}{2a}.
  • Assuming two zeros always: check discriminant; Δ0\Delta\le 0 changes the count.
  • Confusing vertex y with y-intercept; compute separately.

Practice

1) Write y=2x28x+3y=2x^2-8x+3 in vertex form; give vertex and min value.

Solution
Factor 2: y=2[x24x]+3=2[(x2)24]+3=2(x2)28+3=2(x2)25y=2[x^2-4x]+3=2[(x-2)^2-4]+3=2(x-2)^2-8+3=2(x-2)^2-5 → vertex (2, -5), min -5

2) For y=x2+6x5y=-x^2+6x-5, find zeros and max value.

Solution
Complete square: y=(x26x)+5=(x3)2+95=(x3)2+4y=-(x^2-6x)+-5=-(x-3)^2+9-5=-(x-3)^2+4 → vertex (3,4), max 4; zeros at x=1,5x=1,5

3) A revenue model: R(p)=200p2+4000pR(p)=-200p^2+4000p. Find price p maximizing revenue and the max revenue.

Solution
Axis: p=b2a=4000400=10p=-\tfrac{b}{2a}=\tfrac{-4000}{-400}=10; R(10)=200100+400010=20000+40000=20000R(10)= -200\cdot100 + 4000\cdot10 = -20000 + 40000 = 20000