MathIsimple
Lesson 2.4: Function Transformations (Shift & Scale)

Shifts and Scaling

Describe vertical/horizontal shifts and vertical/horizontal scaling. Predict and construct transformed graphs.

Learning Objectives

  • Vertical shift: f(x)+kf(x)+k (up if k>0k>0, down if k<0k<0)
  • Horizontal shift: f(x+h)f(x+h) (left if h>0h>0, right if h<0h<0)
  • Vertical scale: kf(x)k\cdot f(x) (stretch if k>1k>1, compress if 0<k<10<k<1)
  • Horizontal scale: f(kx)f(kx) (compress if k>1k>1, stretch if 0<k<10<k<1)

Describing a Transformation

Given y=2(x+3)21y=2(x+3)^2-1 from y=x2y=x^2

1) Horizontal compression by 1/2 (2x2x)

2) Shift left 3 (x+3x+3)

3) Vertical stretch by 2 (22\cdot)

4) Shift down 1 (1-1)

Advanced Worked Examples

A) Compose multiple transformations

Starting from y=f(x)y=f(x), describe y=3f(x2)+4y=-3f(x-2)+4.

Right 2 (due to x2x-2), vertical reflection across x-axis and stretch by 3 (factor -3), then up 4.

B) Base function to target

Map y=x2y=x^2 to y=12(x+4)29y=\tfrac{1}{2}(x+4)^2-9 via steps.

Left 4; vertical compress by 1/2; down 9.

C) Horizontal vs vertical scaling

Compare y=3f(x)y=3f(x) and y=f(3x)y=f(3x) effects on graph width/height.

3f(x)3f(x) changes height (vertical); f(3x)f(3x) compresses horizontally by factor 1/3.

D) Real context: thermostat control

Daily temperature model T(t)=15+10sin(fracpi12(t8))T(t)=15+10sin( frac{pi}{12}(t-8)), apply shift to represent a heatwave +3°C.

New model: T(t)=T(t)+3=18+10sin(fracpi12(t8))T_*(t)=T(t)+3=18+10sin( frac{pi}{12}(t-8))

Common Pitfalls

  • Sign confusion: f(x+h)f(x+h) shifts left by h, not right.
  • Order matters when composing transformations; apply inner (x changes) before outer (y changes).
  • Mistaking horizontal scaling factor: f(kx)f(kx) compresses by 1/k1/k, not k.

Practice

1) Describe steps to obtain y=2(x1)2+7y=-2(x-1)^2+7 from y=x2y=x^2

Solution
Right 1; vertical stretch by 2; reflect over x-axis; up 7

2) Compare y=f(x)+3y=f(x)+3 and y=f(x+3)y=f(x+3) on the same axes

Solution
First shifts up 3; second shifts left 3

3) For y=13f(2x4)5y=\tfrac{1}{3}f(2x-4)-5, describe the sequence of transformations.

Solution
Right 2 (solve 2x-4=0); horizontal compression by 1/2; vertical compression by 1/3; down 5