MathIsimple
Lesson 3.1: Geometric Transformations & Rigid Motions

Move Shapes Without Changing Shape

Translate, rotate, and reflect figures. Understand invariants: lengths, angle measures, and parallelism stay the same under rigid motions.

Learning Objectives

  • Describe translations, rotations, and reflections
  • Identify properties preserved by isometries
  • Compute image coordinates after transformations
  • Combine transformations and predict results

Rigid Motions

Translation

Shift by vector a, b\langle a,\ b\rangle: (x, y)(x+a, y+b)(x,\ y)\to(x+a,\ y+b)

Rotation

About origin by 90° CW: (x, y)(y, x)(x,\ y)\to(y,\ -x)

Reflection

Across x-axis: (x, y)(x, y)(x,\ y)\to(x,\ -y)

General Rotation

Angle θ\theta about origin: (x, y)(xcosθysinθ, xsinθ+ycosθ)(x,\ y)\to(x\cos\theta-y\sin\theta,\ x\sin\theta+y\cos\theta)

Other Reflections

Across y-axis: (x, y)(x, y)(x,\ y)\to(-x,\ y); Across y=xy=x: (x, y)(y, x)(x,\ y)\to(y,\ x)

Invariants

Rigid motions preserve length, angle, area, and parallelism; rotations/reflections change orientation, translations keep it.

Worked Example (Rotation)

Rotate △ABC with A(1, 2)(1,\ 2), B(3, 1)(3,\ 1), C(2, 4)(2,\ 4) 90° clockwise about origin.

Rule: (x, y)(y, x)(x,\ y)\to(y,\ -x)

A'(2, 1)(2,\ -1), B'(1, 3)(1,\ -3), C'(4, 2)(4,\ -2)

Advanced Worked Examples

A) Composition (Reflection ∘ Reflection)

Reflect across x-axis then across y-axis. Show the composition equals a 180° rotation about origin.

Across x-axis: (x, y)(x, y)(x,\ y)\to(x,\ -y), then y-axis: (x, y)(x, y)(x,\ -y)\to(-x,\ -y)

Which equals rotation by π\pi: (x, y)(x, y)(x,\ y)\to(-x,\ -y)

B) Rotation about a Point P(h, k)

Translate by (h,k)(-h,-k), rotate by θ\theta, then translate back by (h,k)(h,k).

Use T−P ∘ Rθ ∘ TP.

C) Orientation

Translations/rotations preserve orientation; reflections reverse orientation. Composition rule predicts final orientation.

Common Pitfalls

  • Mixing CW/CCW directions for rotation; adopt positive as CCW.
  • Confusing reflection across y=x with rotation; verify mapping (x,y)(y,x)(x,y)\to(y,x).
  • Forgetting to translate when rotating about non-origin centers.

Practice

1) Translate (−2, 5) by ⟨4, −3⟩, then reflect across x-axis

Solution
After translate → (2, 2); reflect x-axis → (2, −2)

2) Rotate (3, −1) CCW 90° about origin, then reflect across y=x

Solution
90° CCW: (x,y)→(−y,x) → (1,3); reflect y=x → (3,1)

3) Give a sequence of rigid motions mapping segment AB to A'B' with same length and direction

Hint
Translate A to A', then rotate about A' to align directions.