MathIsimple
Back to Calculus Hub
Integration Techniques

Special Integration Techniques

Advanced methods for challenging integrals

1. Weierstrass Substitution

Example 1.1: Universal Trig Substitution

For rational functions of sine and cosine, use t=tan(x/2)t = \tan(x/2)

Formulas:

sinx=2t1+t2,cosx=1t21+t2,dx=21+t2dt\sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}, \quad dx = \frac{2}{1+t^2}\,dt

This converts any trig rational function to an algebraic rational function!

2. Reduction Formulas

Example 2.1: Power Reduction

For In=sinnxdxI_n = \int \sin^n x\,dx, we can derive:

In=1nsinn1xcosx+n1nIn2I_n = -\frac{1}{n}\sin^{n-1}x\cos x + \frac{n-1}{n}I_{n-2}

This allows us to reduce the power step by step.

3. Clever Algebraic Tricks

Example 3.1: Adding and Subtracting

Find: x2(xsinx+cosx)2dx\int \frac{x^2}{(x\sin x + \cos x)^2}\,dx

Hint: Add and subtract 11 in the numerator:

x2(xsinx+cosx)2=x2+11(xsinx+cosx)2\frac{x^2}{(x\sin x + \cos x)^2} = \frac{x^2+1-1}{(x\sin x + \cos x)^2}

This can split into simpler parts.