Techniques for integrating trigonometric functions
Find: ∫sin3x dx\int \sin^3 x\,dx∫sin3xdx
Solution: Use sin2x=1−cos2x\sin^2 x = 1 - \cos^2 xsin2x=1−cos2x
Let u=cosxu = \cos xu=cosx, then du=−sinx dxdu = -\sin x\,dxdu=−sinxdx
Find: ∫cos2x dx\int \cos^2 x\,dx∫cos2xdx
Solution: Use double angle formula cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2}cos2x=21+cos2x
Find: ∫sin(3x)cos(2x) dx\int \sin(3x)\cos(2x)\,dx∫sin(3x)cos(2x)dx
Solution: Use product-to-sum formula:
Find: ∫tan2x dx\int \tan^2 x\,dx∫tan2xdx
Solution: Use tan2x=sec2x−1\tan^2 x = \sec^2 x - 1tan2x=sec2x−1
Find: ∫secxtanx dx\int \sec x\tan x\,dx∫secxtanxdx
Solution: Notice that ddx(secx)=secxtanx\frac{d}{dx}(\sec x) = \sec x\tan xdxd(secx)=secxtanx