MathIsimple
Back to Calculus Hub
Integration Techniques

Trigonometric Integrals

Techniques for integrating trigonometric functions

1. Powers of Sine and Cosine

Example 1.1: Odd Power of Sine

Find: sin3xdx\int \sin^3 x\,dx

Solution: Use sin2x=1cos2x\sin^2 x = 1 - \cos^2 x

sin3xdx=sinx(1cos2x)dx\int \sin^3 x\,dx = \int \sin x(1-\cos^2 x)\,dx

Let u=cosxu = \cos x, then du=sinxdxdu = -\sin x\,dx

=(1u2)du=u+u33+C=cosx+cos3x3+C= -\int (1-u^2)\,du = -u + \frac{u^3}{3} + C = -\cos x + \frac{\cos^3 x}{3} + C
Example 1.2: Even Powers

Find: cos2xdx\int \cos^2 x\,dx

Solution: Use double angle formula cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2}

cos2xdx=1+cos2x2dx=x2+sin2x4+C\int \cos^2 x\,dx = \int \frac{1+\cos 2x}{2}\,dx = \frac{x}{2} + \frac{\sin 2x}{4} + C

2. Products of Trig Functions

Example 2.1: Sin times Cos

Find: sin(3x)cos(2x)dx\int \sin(3x)\cos(2x)\,dx

Solution: Use product-to-sum formula:

sinAcosB=12[sin(A+B)+sin(AB)]\sin A\cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]
sin(3x)cos(2x)dx=12[sin(5x)+sin(x)]dx\int \sin(3x)\cos(2x)\,dx = \frac{1}{2}\int [\sin(5x) + \sin(x)]\,dx
=110cos(5x)12cos(x)+C= -\frac{1}{10}\cos(5x) - \frac{1}{2}\cos(x) + C

3. Tangent and Secant

Example 3.1: Powers of Tangent

Find: tan2xdx\int \tan^2 x\,dx

Solution: Use tan2x=sec2x1\tan^2 x = \sec^2 x - 1

tan2xdx=(sec2x1)dx=tanxx+C\int \tan^2 x\,dx = \int (\sec^2 x - 1)\,dx = \tan x - x + C
Example 3.2: Secant and Tangent

Find: secxtanxdx\int \sec x\tan x\,dx

Solution: Notice that ddx(secx)=secxtanx\frac{d}{dx}(\sec x) = \sec x\tan x

secxtanxdx=secx+C\int \sec x\tan x\,dx = \sec x + C