MathIsimple
Back to Calculus

Calculus Practice Set 3

2 Hours

14 challenging problems

1Problem 1

Let f(x)=(x1)(x22)(x33)(e100100)f(x) = (x-1)(x^2-2)(x^3-3)(e^{100}-100), find f(1)f'(1).

2Problem 2

Given parametric equations {x=t3+3t1y=et\begin{cases} x = t^3+3t-1 \\ y = e^t \end{cases}, find the concave/convex intervals of curve y=y(x)y=y(x) (expressed in parameter t), and identify inflection points (in (x,y) form).

3Problem 3

Given curve y=y(x)y=y(x) determined by x4=0yet2dtx^4 = \int_0^y e^{-t^2}\,dt, find the radius of curvature at x=0x=0.

4Problem 4

Find: limx0(1x2cos2xsin4x)\lim_{x\to 0}\left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^4 x}\right)

5Problem 5

Let f(x)=limnx2n+1+(a1)xn+1x2naxn+1f(x) = \lim_{n\to\infty}\frac{x^{2n}+1+(a-1)x^n+1}{x^{2n}-ax^n+1} be continuous on (0,+)(0,+\infty), find the value of constant aa.

6Problem 6

Find all asymptotes of curve y=x2x2+1exy = \frac{x^2}{x^2+1-e^{-x}}.

7Problem 7

Calculate: 1e(x1)34x2dx\int_1^e (x-1)^3\sqrt{4-x^2}\,dx

8Problem 8

Calculate the improper integral: 1+arctanxx4dx\int_1^{+\infty}\frac{\arctan x}{x^4}\,dx

9Problem 9

Let constant a>0a>0, an=0aa+xndxa_n = \int_0^a\sqrt{a+x^n}\,dx. Discuss whether series n=1(1)nan\sum_{n=1}^{\infty}(-1)^n a_n converges, converges absolutely, or diverges. Prove your answer.

10Problem 10

Let f(x)=(1+sin2x)xf(x) = (1+\sin 2x)^x for x0x\neq 0, and f(x)f(x) is continuous at x=0x=0. Find f(0)f(0) and the tangent line equation of curve y=f(x)y=f(x) at x=0x=0.

11Problem 11

Cycloid L has parametric equations {x=a(tsint)y=a(1cost)\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases} where 0<t<2π,a>00<t<2\pi, a>0. Find the volume when region D enclosed by curve L and x-axis is rotated around line y=2ay=-2a.

12Problem 12

Find the radius of convergence, interval of convergence, and sum function of power series n=0ln2n+4n32n+1xn\sum_{n=0}^{\infty}\frac{\ln^2 n + 4n - 3}{2n+1}x^n.

13Problem 13

(1) For 0<x<+0<x<+\infty, prove there exists η(0,1)\eta\in(0,1) such that x+1x=12x+η\sqrt{x+1}-\sqrt{x} = \frac{1}{2\sqrt{x+\eta}}.

(2) Based on the result above, find limn\lim_{n\to\infty} of the expression involving n, and when 0<x<+0<x<+\infty, determine the range of function η=η(x)\eta=\eta(x).

14Problem 14

Prove:

(1) is positive

(2) For all α(0,π2]\alpha\in\left(0,\frac{\pi}{2}\right], 02πsinxxdx>sinαlnπ2α22πα\int_0^{2\pi}\frac{\sin x}{x}\,dx > \sin\alpha\ln\frac{\pi^2-\alpha^2}{2\pi-\alpha}