MathIsimple
Back to Calculus

Calculus Practice Set 4

2 Hours

14 challenging problems

1Problem 1

Let y=x33arccosx19(x3+2)1x2+ln5y = \frac{x^3}{3}\arccos x - \frac{1}{9}(x^3+2)\sqrt{1-x^2}+\ln 5, find dydy.

2Problem 2

Given y=y(x)y=y(x) determined by {x(t)=1+t2y(t)=1t3u1+udu\begin{cases} x(t) = \sqrt{1+t^2} \\ y(t) = \int_1^t \frac{3^u}{\sqrt{1+u}}\,du \end{cases}, find dydx,d2ydx2\frac{dy}{dx}, \frac{d^2y}{dx^2}.

3Problem 3

Given y=y(x)y=y(x) determined by y3+xy+x2y2+x2y3=0y^3+xy+x^2y^2+x^2y-3=0, find tangent line of curve y=y(x)y=y(x) at point (1,1).

4Problem 4

Calculate: 01x32xx2dx\int_0^1 x^3\sqrt{2x-x^2}\,dx

5Problem 5

Calculate the improper integral: 0+arctanx(1x2)3dx\int_0^{+\infty}\frac{\arctan x}{(\sqrt{1-x^2})^3}\,dx

6Problem 6

Given f(x)=1xln(1+t)tdtf(x) = \int_1^x \frac{\ln(1+t)}{t}\,dt, calculate 12f(x)xdx\int_1^2 \frac{f(x)}{\sqrt{x}}\,dx.

7Problem 7

Find: limx02sinx+x2cos1x(x3+1)ln(1+x2)\lim_{x\to 0}\frac{2\sin x + x^2\cos\frac{1}{x}}{(x^3+1)\ln(1+x^2)}

8Problem 8

Find: limx0esinxex1+x31\lim_{x\to 0}\frac{e^{\sin x}-e^x}{\sqrt{1+x^3}-1}

9Problem 9

Given sequence an=sinπn+1n+1+sin2πn+1n+12++sinπn+1na_n = \frac{\sin\frac{\pi}{n+1}}{n+1} + \frac{\sin\frac{2\pi}{n+1}}{n+\frac{1}{2}} + \cdots + \frac{\sin\pi}{n+\frac{1}{n}}, n=1,2,n=1,2,\ldots, find limnan\lim_{n\to\infty}a_n.

10Problem 10

Given f(x)=xe1+t2dt+1x1+t2dtf(x) = \int_x^e \sqrt{1+t^2}\,dt + \int_1^x \sqrt{1+t^2}\,dt, find all zeros of f(x)f(x).

11Problem 11

Find curve f(x)=xarctanxln1+x2f(x) = x\arctan x - \ln\sqrt{1+x^2} with its derivative's sign change intervals.

12Problem 12

Given sequences {an},{bn}\{a_n\}, \{b_n\} satisfy 0<an<π20<a_n<\frac{\pi}{2}, 0<bn<π20<b_n<\frac{\pi}{2}, cosanan=cosbn\cos a_n - a_n = \cos b_n, and n=1bn\sum_{n=1}^{\infty}b_n converges.

(1) Prove limnan=0\lim_{n\to\infty}a_n=0;

(2) Prove series n=1anbn\sum_{n=1}^{\infty}\frac{a_n}{b_n} converges.

13Problem 13

Given curve y=x2y=x^2 in region A(a,a2)A(a,a^2) where a>0a>0, let DD be the region bounded by curve and tangent at another point, rotated around x-axis.

(1) Find the volume of solid;

(2) When curve and tangent cut plane at equal areas, find the volume of solid.

14Problem 14

Given continuous function f(x)f(x) on [-1,1] with 2 derivatives, f(1)=1f(1)=-1, prove:

(1) There exists ξ(0,1)\xi\in(0,1) such that f(ξ)=1f'(\xi)=-1;

(2) There exists η(1,1)\eta\in(-1,1) such that ηf(η)f(η)=1\eta f''(\eta)-f'(\eta)=-1.