MathIsimple
Back to Calculus

Calculus Practice Set 5

2 Hours

11 challenging problems

1Problem 1

Let f(x)=x2exf(x)=x^2e^x, find f(10)(0)f^{(10)}(0).

2Problem 2

Calculate: π6π21+sinx1+cosxdx\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{1+\sin x}{1+\cos x}\,dx

3Problem 3

Given {x=cos2ty=(1cost)2\begin{cases} x=\cos 2t \\ y=(1-\cos t)^2 \end{cases}, find d2ydx2\frac{d^2y}{dx^2}.

4Problem 4

Calculate: f(x)=0xet22dtf(x)=\int_0^x e^{-\frac{t^2}{2}}\,dt, x(,+)x\in(-\infty,+\infty), find asymptotes of curve y=f(x)y=f(x) (if they exist).

5Problem 5

Find: limn(1n+1+1n+2++1n+n)\lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)

6Problem 6

Given f(x)f(x) is continuous and f(x+2)f(x)=xf(x+2)-f(x)=x, 02f(x)dx=1\int_0^2 f(x)\,dx=1, find 13f(x)dx\int_1^3 f(x)\,dx.

7Problem 7

Find: limx0(cosx)21x\lim_{x\to 0}\frac{(\cos x)^2-1}{x}

8Problem 8

Calculate indefinite integral: x3x2+1dx\int\frac{x^3}{\sqrt{x^2+1}}\,dx

9Problem 9

Calculate improper integral: 0+dx1+x4\int_0^{+\infty}\frac{dx}{1+x^4}

10Problem 10

Given f(x)=xexy+12siny=0f(x)=xe^x-y+\frac{1}{2}\sin y=0, find yx=0y|_{x=0} and yx=0y'|_{x=0}.

11Problem 11

Find curve y=exy=e^x, 0xln30\leq x\leq\ln\sqrt{3} arc length.