11 challenging problems
Let f(x)=x2exf(x)=x^2e^xf(x)=x2ex, find f(10)(0)f^{(10)}(0)f(10)(0).
Calculate: ∫π6π21+sinx1+cosx dx\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{1+\sin x}{1+\cos x}\,dx∫6π2π1+cosx1+sinxdx
Given {x=cos2ty=(1−cost)2\begin{cases} x=\cos 2t \\ y=(1-\cos t)^2 \end{cases}{x=cos2ty=(1−cost)2, find d2ydx2\frac{d^2y}{dx^2}dx2d2y.
Calculate: f(x)=∫0xe−t22 dtf(x)=\int_0^x e^{-\frac{t^2}{2}}\,dtf(x)=∫0xe−2t2dt, x∈(−∞,+∞)x\in(-\infty,+\infty)x∈(−∞,+∞), find asymptotes of curve y=f(x)y=f(x)y=f(x) (if they exist).
Find: limn→∞(1n+1+1n+2+⋯+1n+n)\lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)limn→∞(n+11+n+21+⋯+n+n1)
Given f(x)f(x)f(x) is continuous and f(x+2)−f(x)=xf(x+2)-f(x)=xf(x+2)−f(x)=x, ∫02f(x) dx=1\int_0^2 f(x)\,dx=1∫02f(x)dx=1, find ∫13f(x) dx\int_1^3 f(x)\,dx∫13f(x)dx.
Find: limx→0(cosx)2−1x\lim_{x\to 0}\frac{(\cos x)^2-1}{x}limx→0x(cosx)2−1
Calculate indefinite integral: ∫x3x2+1 dx\int\frac{x^3}{\sqrt{x^2+1}}\,dx∫x2+1x3dx
Calculate improper integral: ∫0+∞dx1+x4\int_0^{+\infty}\frac{dx}{1+x^4}∫0+∞1+x4dx
Given f(x)=xex−y+12siny=0f(x)=xe^x-y+\frac{1}{2}\sin y=0f(x)=xex−y+21siny=0, find y∣x=0y|_{x=0}y∣x=0 and y′∣x=0y'|_{x=0}y′∣x=0.
Find curve y=exy=e^xy=ex, 0≤x≤ln30\leq x\leq\ln\sqrt{3}0≤x≤ln3 arc length.