MathIsimple
Back to Calculus

Calculus Practice Set 6

2 Hours

14 challenging problems

1Problem 1

Given constants a,ba, b, function f(x)={(2017+x)1b,x0a(1x)1x,x<0f(x) = \begin{cases} (2017+x)^{\frac{1}{b}} & ,x \geq 0 \\ a(1-x)^{\frac{1}{x}} & ,x < 0 \end{cases}, f(x)=0f(x)=0 when x=0x=0, find values of a,ba, b.

2Problem 2

Calculate the limit: limx+(x3+x2+13x3+13)\lim_{x\to +\infty}\left(\sqrt[3]{x^3+x^2+1} - \sqrt[3]{x^3+1}\right)

3Problem 3

Given f(x)=arctanxf(x) = \arctan x, find f(2018)(0)f^{(2018)}(0).

4Problem 4

Prove using N as constant: limn2n4+13n4+4=23\lim_{n\to\infty}\frac{2n^4+1}{3n^4+4} = \frac{2}{3}

5Problem 5

Given f(t)={sin1tt,t01,t=0f(t) = \begin{cases} \frac{\sin\frac{1}{t}}{t} & ,t \neq 0 \\ 1 & ,t = 0 \end{cases}, define F(x)=0xf(t)dtF(x) = \int_0^x f(t)\,dt, find F(0)F'(0).

6Problem 6

Given curve y=y(x)y=y(x) satisfies yex+y2=2ye^x + y^2 = 2, find dyx=1dy|_{x=1}.

7Problem 7

Given y=y(x)y=y(x) determined by parametric equations {x=tsint,t(0,1)y=1cost,t(0,1)\begin{cases} x = t - \sin t & ,t \in (0,1) \\ y = 1 - \cos t & ,t \in (0,1) \end{cases}, find y(x),y(x)y'(x), y''(x).

8Problem 8

Calculate indefinite integral: arctan1x1+xdx\int \arctan\sqrt{\frac{1-x}{1+x}}\,dx, x(1,1)x \in (-1,1)

9Problem 9

Find area of region bounded by curve y=x3y=x^3 and lines x=1|x|=1.

10Problem 10

Calculate anti-derivative: 1earctanxx2dx\int_1^e \frac{\arctan x}{x^2}\,dx

11Problem 11

Given y=f(x)>0y=f(x) > 0 with continuous derivative passing through origin, the solid of revolution formed by rotating around x-axis has volume at any point equal to the lateral surface area. What is the radius of the sphere with maximum volume?

12Problem 12

Given c<dc < d are two real numbers, ff is defined on (c,d)(c,d) with second derivative. For all x1,x2(c,d)x_1,x_2 \in (c,d) with x1<x2x_1 < x_2, there exists f(x1+x22)1x2x1x1x2f(t)dtf(x1)+f(x2)2f\left(\frac{x_1+x_2}{2}\right) \leq \frac{1}{x_2-x_1}\int_{x_1}^{x_2}f(t)\,dt \leq \frac{f(x_1)+f(x_2)}{2}.

13Problem 13

Prove:

(1) For all nNn\in\mathbb{N}, 0π2(sinx)ndx=0π2(cosx)ndx\int_0^{\frac{\pi}{2}}(\sin x)^n\,dx = \int_0^{\frac{\pi}{2}}(\cos x)^n\,dx

(2) For all nNn\in\mathbb{N}, let In=0π2(sinx)ndxI_n = \int_0^{\frac{\pi}{2}}(\sin x)^n\,dx, prove for all nN,n2n\in\mathbb{N}, n\geq 2, In=n1nIn2I_n = \frac{n-1}{n}I_{n-2}

(3) Prove: For all nN+n\in\mathbb{N}^+, In=(2n1)!!(2n)!!π2I_n = \frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2}, for all nNn\in\mathbb{N}, I2n+1=(2n)!!(2n+1)!!I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}

(4) Prove Wallis formula: limn(n!)222n(2n)!n=π\lim_{n\to\infty}\frac{(n!)^22^{2n}}{(2n)!\sqrt{n}} = \sqrt{\pi}

14Problem 14

Given:

(1) For all nZ+n\in\mathbb{Z}^+, let an=n!ennn+1a_n = \frac{n!e^n}{n^{n+1}}, prove sequence {an}\{a_n\} is strictly increasing and has limit α\alpha which exists;

(2) For all nZ+n\in\mathbb{Z}^+, let bn=ane14nb_n = a_ne^{-\frac{1}{4n}}, prove sequence {bn}\{b_n\} is strictly decreasing. Also limnbn=α\lim_{n\to\infty}b_n = \alpha, by which α>0\alpha > 0;

(3) Use Wallis formula to prove a=2πa = \sqrt{2\pi};

(4) Prove Stirling's formula in its asymptotic form: n!2πn(ne)nn! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n as nn\to\infty.