MathIsimple
Back to Calculus

Calculus Practice Set 7

2 Hours

14 challenging problems

1Problem 1

For all nZ+n\in\mathbb{Z}^+, let an=(1+1n)na_n = \left(1+\frac{1}{n}\right)^n, bn=(1+1n)n+1b_n = \left(1+\frac{1}{n}\right)^{n+1}. We already know sequence {an}n=1\{a_n\}^{\infty}_{n=1} is strictly increasing, sequence {bn}n=1\{b_n\}^{\infty}_{n=1} is strictly decreasing. Prove using fixed ε>0\varepsilon > 0 definition that: For all nZ+n\in\mathbb{Z}^+, there exists 1n+1<ln(1+1n)<1n\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}.

2Problem 2

Find limit: limx0(3+2x)x3xarcsin(x2)\lim_{x\to 0}\frac{(3+2x)^x - 3^x}{\arcsin(x^2)}

3Problem 3

Given f(x)=11+1x2f(x) = \frac{1}{1+\frac{1}{x^2}}, find f(2019)(0)f^{(2019)}(0).

4Problem 4

Given function f(x)={exx1x00x=0f(x) = \begin{cases} e^{\frac{x}{x-1}} & x\neq 0 \\ 0 & x=0 \end{cases}, let f(x)=B0+B11!x+B22!x2++Bnn!+o(xn)f(x) = B_0 + \frac{B_1}{1!}x + \frac{B_2}{2!}x^2 + \cdots + \frac{B_n}{n!} + o(x^n), x0x\to 0 (mid-point formula holds), find coefficients B0,B1,B2B_0, B_1, B_2 values.

5Problem 5

Given f(x)=x1xf(x) = x^{\frac{1}{x}}, x>0x > 0, find f(x)f(x) maximum value on (0,+)(0,+\infty).

6Problem 6

Given curve y=y(x)y=y(x) determined by x=0x=0 when all points satisfy certain derivative condition, and determines limx0(1+x+y(x)x)1x=e2019\lim_{x\to 0}\left(1+x+\frac{y(x)}{x}\right)^{\frac{1}{x}} = e^{2019}, find y(0),y(0),y(0)y(0), y'(0), y''(0).

7Problem 7

Given curve y=y(x)y=y(x) satisfies y+y2+3xy=1y''+y^2+3xy=1, find dyx=1dy|_{x=1}.

8Problem 8

Calculate indefinite integral: xlnx(1+x2)2dx\int\frac{x\ln x}{(1+x^2)^2}\,dx

9Problem 9

Given anti-derivative: 0π2sinxxdx=π2\int_0^{\frac{\pi}{2}}\frac{\sin x}{x}\,dx = \frac{\pi}{2}, calculate anti-derivative: 0+(sinx)2x2dx\int_0^{+\infty}\frac{(\sin x)^2}{x^2}\,dx

10Problem 10

Find arc length of parametric curve: {x=tsint,t[0,1]y=1cost,t[0,1]\begin{cases} x = t - \sin t & ,t\in[0,1] \\ y = 1 - \cos t & ,t\in[0,1] \end{cases}

11Problem 11

Let {an}\{a_n\} be a real sequence, aa is a real number, define NN as positive integer. Prove that: the limit by NN definition i=1ai\sum_{i=1}^{\infty}a_i converges and equals Ta(2)T-a(2) if and only if the summation i=1ai\sum_{i=1}^{\infty}a_i does not converge and equals TaT-a.

12Problem 12

Let ff be defined on region (0,1)(0,1), continuous, and satisfies for all in mid-point formula form 0<x1<x2<x30 < x_1 < x_2 < x_3, there exists f(x2)f(x1)x2x1f(x3)f(x1)x3x1f(x3)f(x2)x3x2\frac{f(x_2)-f(x_1)}{x_2-x_1} \leq \frac{f(x_3)-f(x_1)}{x_3-x_1} \leq \frac{f(x_3)-f(x_2)}{x_3-x_2}. For any x0(0,1)x_0\in(0,1), prove at least one of the limits f(x0),f(x0+)f'(x_0^-), f'(x_0^+) exists.

13Problem 13

Let ff on [0,+)[0,+\infty) have continuous derivative with strictly increasing property, let f(0)=0f(0)=0. Also α>0,b>0\alpha > 0, b > 0 are two real constants, prove the following inequality holds: 0af(x)dx+0bf1(y)dyab\int_0^a f(x)\,dx + \int_0^b f^{-1}(y)\,dy \geq ab.

14Problem 14

For all nZ+n\in\mathbb{Z}^+, let an=i=1ninn+1ia_n = \sum_{i=1}^{n}\frac{\sqrt{i}}{n\sqrt{n+\frac{1}{i}}}, prove: limnan=23\lim_{n\to\infty}a_n = \frac{2}{3}