MathIsimple
Back to Calculus

Calculus Practice Set 8

2 Hours

14 challenging problems

1Problem 1

Calculate: limn(n21)1n\lim_{n\to\infty}\left(n^2-1\right)^{\frac{1}{n}}

2Problem 2

Calculate: limn(n2+1n21acosnπn+1)\lim_{n\to\infty}\left(\frac{n^2+1}{n^2-1} - a\cos\frac{n\pi}{n+1}\right)

3Problem 3

Calculate: limx00xtsintdtx3\lim_{x\to 0}\frac{\int_0^x t\sin t\,dt}{x^3}

4Problem 4

Given f(x)={(1+ax)1xex,x0b,x=0f(x) = \begin{cases} \frac{(1+ax)^{\frac{1}{x}}-e}{x} & ,x\neq 0 \\ b & ,x=0 \end{cases}, determine values of a,ba,b such that f(x)f(x) is continuous and differentiable at x=0x=0.

5Problem 5

Calculate definite integral: 01ln(1+x)1+x2dx\int_0^1 \frac{\ln(1+x)}{1+x^2}\,dx

6Problem 6

Calculate improper integral: 0+lnx(1+x2)2dx\int_0^{+\infty}\frac{\ln x}{(1+x^2)^2}\,dx

7Problem 7

Calculate area bounded by curves y=ex,y=exy=e^x, y=e^{-x} and line x=1x=1.

8Problem 8

Given parametric curve {x=a(tsint)y=a(1cost)\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}, 0t2π,a>00\leq t\leq 2\pi, a>0, find arc length.

9Problem 9

Find power series n=1xnn\sum_{n=1}^{\infty}\frac{x^n}{n} sum function, radius and interval of convergence.

10Problem 10

Let sequence {xn}\{x_n\} satisfy x1=32x_1 = \frac{3}{2}, xn+1=12(xn+2xn)x_{n+1} = \frac{1}{2}\left(x_n+\frac{2}{x_n}\right). Prove {xn}\{x_n\} converges and find its limit.

11Problem 11

Let f(x)f(x) be continuous on [a,b][a,b] with f(a)<0,f(b)>0f(a) < 0, f(b) > 0. Prove there exists ξ(a,b)\xi\in(a,b) such that f(ξ)=0f(\xi)=0.

12Problem 12

Let f(x)f(x) have continuous second derivative on [0,1][0,1] with f(0)=f(1)=0f(0)=f(1)=0 and 01f(x)dx=1\int_0^1 f(x)\,dx=1. Prove there exists ξ(0,1)\xi\in(0,1) such that f(ξ)8|f''(\xi)|\geq 8.

13Problem 13

Let f(x)f(x) be continuous on [a,b][a,b] and differentiable on (a,b)(a,b). If f(x)0f'(x)\neq 0 for all x(a,b)x\in(a,b), prove f(x)f(x) is strictly monotonic on [a,b][a,b].

14Problem 14

Given sequence defined by a1=1a_1=1, an+1=an+1ana_{n+1}=a_n+\frac{1}{a_n}. Prove limnan2n=1\lim_{n\to\infty}\frac{a_n}{\sqrt{2n}}=1.