MathIsimple
Back to Calculus

Calculus Practice Set 9

2 Hours

12 challenging problems

1Problem 1

Find limit: limn(n21sin21n)\lim_{n\to\infty}\left(n^2 - \frac{1}{\sin^2\frac{1}{n}}\right)

2Problem 2

Find limit: limx0ex2+1sinx+x2cos1xln(1+x)\lim_{x\to 0}\frac{e^{x^2+1}\sin x + x^2\cos\frac{1}{x}}{\ln(1+x)}

3Problem 3

Calculate indefinite integral: arctanxxdx\int\frac{\arctan\sqrt{x}}{\sqrt{x}}\,dx

4Problem 4

(1) Find limn(a1)n++(am)nn\lim_{n\to\infty}\sqrt[n]{(a_1)^n + \cdots + (a_m)^n}

(2) Find limit: limx(1xeu2du)1x\lim_{x\to\infty}\left(\int_1^x e^{-u^2}\,du\right)^{\frac{1}{x}}

5Problem 5

Let curve be defined by r=r(θ)r=r(\theta) where θ[0,2π]\theta\in[0,2\pi] in polar coordinates, find curve length.

6Problem 6

Calculate improper integral: 0+xex(1+ex)2dx\int_0^{+\infty}\frac{xe^x}{(1+e^x)^2}\,dx

7Problem 7

Given equation x29+y24=1\frac{x^2}{9} + \frac{y^2}{4} = 1, the area obtained by the first quadrant curve rotated around the line x0y+5y=15|x_0|y + 5y = 15, find the maximum value.

8Problem 8

Let f(x)f(x) have second-order continuous derivative on (0,+)(0,+\infty) with T(0)<0T(0) < 0 for periodic function. Show that if f(x0)0f'(x_0)\geq 0, then x0(0,1)\exists x_0\in(0,1) such that f(x0)8f''(x_0)\geq 8.

9Problem 9

Let ff be continuous on R\mathbb{R} with limt0T(0)ψ(t)\lim_{t\to 0}T(0)\psi(t) for the period. Prove:

(1) Prove function F(x)=0xf(t)dtxT0Tf(t)duF(x) = \int_0^x f(t)\,dt - \frac{x}{T}\int_0^T f(t)\,du is periodic with period T;

(2) Prove: limx1x0xf(t)dt=1T0Tf(u)du\lim_{x\to\infty}\frac{1}{x}\int_0^x f(t)\,dt = \frac{1}{T}\int_0^T f(u)\,du

(3) Prove: limx0xsintdtx=2π\lim_{x\to\infty}\frac{\int_0^x|\sin t|\,dt}{x} = \frac{2}{\pi}

10Problem 10

Let function ff on [0,1][0,1] be continuous, 01f(x)dx1x32\int_0^1 f(x)\,dx \geq \frac{1-x^3}{2} holds. Prove: 01[f(t)]2dt512\int_0^1[f(t)]^2\,dt \geq \frac{5}{12}

11Problem 11

Given function f(x)f(x) on [0,+)[0,+\infty) continuous with strictly increasing property, there exists f(0)=0f(0)=0. Also continuous, let x1,x2(0,1)x_1,x_2\in(0,1), x1<x2x_1 < x_2 have f(x1+x22)<f(x1)+f(x2)2f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2}.

Prove: There exists t1,t2[a,b]t_1,t_2\in[a,b], t1<t2t_1 < t_2 such that f(t1)f(t1)Lt2t1|f(t_1) - f(t_1)| \leq L|t_2-t_1| holds.

12Problem 12

Let ff on [0,1][0,1] have two continuous derivatives, f(0)=0=f(1)f(0)=0=f(1), minx[0,1]f(x)=1\min_{x\in[0,1]}f''(x) = -1, prove:

There exists x0(0,1)x_0\in(0,1) such that f(x0)8f'(x_0)\geq 8.