MathIsimple
Course 9

Antiderivatives and Basic Integration

Section 1: Antiderivatives

Definition 1.1: Antiderivative

Let f(x)f(x) be a function defined on an interval II. A function F(x)F(x) is called an antiderivative of f(x)f(x) on II if:

F(x)=f(x)for all xIF'(x) = f(x) \quad \text{for all } x \in I
Theorem 1.1: Antiderivatives Differ by Constant

If F(x)F(x) and G(x)G(x) are both antiderivatives of f(x)f(x) on II, then:

F(x)G(x)=CF(x) - G(x) = C

for some constant CC.

Proof of Theorem 1.1:

Since F(x)=G(x)=f(x)F'(x) = G'(x) = f(x), we have:

(FG)(x)=F(x)G(x)=0(F - G)'(x) = F'(x) - G'(x) = 0

By MVT, F(x)G(x)F(x) - G(x) is constant. ∎

Definition 1.2: Indefinite Integral

The indefinite integral of f(x)f(x) is:

f(x)dx=F(x)+C\int f(x)\,dx = F(x) + C

where F(x)F(x) is any antiderivative of f(x)f(x) and CC is the constant of integration.

Section 2: Basic Integration Formulas

Power Rule

For n1n \neq -1:

xndx=xn+1n+1+C\int x^n\,dx = \frac{x^{n+1}}{n+1} + C

For n=1n = -1:

1xdx=lnx+C\int \frac{1}{x}\,dx = \ln|x| + C
Exponential Functions
exdx=ex+C\int e^x\,dx = e^x + C
axdx=axlna+C(a>0,a1)\int a^x\,dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1)
Trigonometric Functions
sinxdx=cosx+C\int \sin x\,dx = -\cos x + C
cosxdx=sinx+C\int \cos x\,dx = \sin x + C
sec2xdx=tanx+C\int \sec^2 x\,dx = \tan x + C
csc2xdx=cotx+C\int \csc^2 x\,dx = -\cot x + C
secxtanxdx=secx+C\int \sec x \tan x\,dx = \sec x + C
cscxcotxdx=cscx+C\int \csc x \cot x\,dx = -\csc x + C
Inverse Trigonometric Functions
11x2dx=arcsinx+C\int \frac{1}{\sqrt{1-x^2}}\,dx = \arcsin x + C
11+x2dx=arctanx+C\int \frac{1}{1+x^2}\,dx = \arctan x + C
Example 2.1: Basic Integration Examples

(a) x7dx=x88+C\int x^7\,dx = \frac{x^8}{8} + C

(b) e3xdx=e3x3+C\int e^{3x}\,dx = \frac{e^{3x}}{3} + C

(c) cosxdx=sinx+C\int \cos x\,dx = \sin x + C

(d) 11+x2dx=arctanx+C\int \frac{1}{1+x^2}\,dx = \arctan x + C

Section 3: Linearity Properties

Theorem 3.1: Linearity of Integration
[f(x)+g(x)]dx=f(x)dx+g(x)dx\int [f(x) + g(x)]\,dx = \int f(x)\,dx + \int g(x)\,dx
kf(x)dx=kf(x)dx\int kf(x)\,dx = k\int f(x)\,dx
Example 3.1: Linearity Application

Find: (3x2+2sinxex)dx\int (3x^2 + 2\sin x - e^x)\,dx

(3x2+2sinxex)dx=3x2dx+2sinxdxexdx\int (3x^2 + 2\sin x - e^x)\,dx = 3\int x^2\,dx + 2\int \sin x\,dx - \int e^x\,dx
=x32cosxex+C= x^3 - 2\cos x - e^x + C

Section 4: Trigonometric Integrals

Example 4.1: Trigonometric Integrals
  • sinxdx=cosx+C\int \sin x\,dx = -\cos x + C
  • cosxdx=sinx+C\int \cos x\,dx = \sin x + C
  • sec2xdx=tanx+C\int \sec^2 x\,dx = \tan x + C
  • csc2xdx=cotx+C\int \csc^2 x\,dx = -\cot x + C

Section 5: Exponential and Logarithmic Integrals

Example 5.1: Exponential Integrals
  • exdx=ex+C\int e^x\,dx = e^x + C
  • axdx=axlna+C\int a^x\,dx = \frac{a^x}{\ln a} + C
  • 1xdx=lnx+C\int \frac{1}{x}\,dx = \ln |x| + C

Section 6: Inverse Trigonometric Integrals

Example 6.1: Inverse Trig Integrals
  • 11x2dx=arcsinx+C\int \frac{1}{\sqrt{1-x^2}}\,dx = \arcsin x + C
  • 11+x2dx=arctanx+C\int \frac{1}{1+x^2}\,dx = \arctan x + C
  • 1xx21dx=arcsec x+C\int \frac{1}{|x|\sqrt{x^2-1}}\,dx = \text{arcsec } x + C

Section 7: Integration by Recognition

Example 7.1: Recognition Method

Find: 2x1+x2dx\int \frac{2x}{1+x^2}\,dx

Solution: Recognize that (1+x2)=2x(1+x^2)' = 2x:

2x1+x2dx=ln(1+x2)+C\int \frac{2x}{1+x^2}\,dx = \ln(1+x^2) + C
Practice Quiz: Antiderivatives and Basic Integration
10
Questions
0
Correct
0%
Accuracy
1
If F(x)=f(x)F'(x) = f(x) for all xIx \in I, then F(x)F(x) is called:
Easy
Not attempted
2
If F(x)F(x) and G(x)G(x) are both antiderivatives of f(x)f(x), then:
Easy
Not attempted
3
x5dx=\int x^5\,dx =
Easy
Not attempted
4
e3xdx=\int e^{3x}\,dx =
Easy
Not attempted
5
tanxdx=\int \tan x\,dx =
Medium
Not attempted
6
11+x2dx=\int \frac{1}{1+x^2}\,dx =
Easy
Not attempted
7
3xdx=\int 3^x\,dx =
Medium
Not attempted
8
11x2dx=\int \frac{1}{\sqrt{1-x^2}}\,dx =
Medium
Not attempted
9
[f(x)+g(x)]dx=\int [f(x) + g(x)]\,dx =
Medium
Not attempted
10
0dx=\int 0\,dx =
Easy
Not attempted

Frequently Asked Questions

What is the difference between antiderivative and indefinite integral?

An antiderivative F(x) is a specific function with F'(x) = f(x). The indefinite integral ∫f(x)dx is the family of all antiderivatives: F(x) + C.

Why do we add '+C' to indefinite integrals?

Because if F(x) is an antiderivative, so is F(x) + C for any constant. The '+C' represents all possible antiderivatives.

Does every function have an antiderivative?

No. But continuous functions always have antiderivatives (Fundamental Theorem). Functions with jump discontinuities may not.

How do I know which formula to use?

Identify the form of the integrand. Look for: power functions (x^n), exponentials (e^x, a^x), trig functions, inverse trig patterns (1/√(1-x²), 1/(1+x²)), and logarithms (1/x).

What is the power rule for integration?

For n ≠ -1: ∫x^n dx = x^(n+1)/(n+1) + C. For n = -1: ∫1/x dx = ln|x| + C.