MathIsimple
Course 12

Improper Integrals

Section 1: Type I Improper Integrals

Definition 1.1: Type I Improper Integral

If ff is integrable on [a,b][a, b] for all b>ab > a, then:

a+f(x)dx=limb+abf(x)dx\int_a^{+\infty} f(x)\,dx = \lim_{b \to +\infty} \int_a^b f(x)\,dx

If the limit exists and is finite, the integral converges; otherwise it diverges.

Example 1.1: Convergent Type I Integral

Evaluate: 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx

Solution:

1+1x2dx=limb+1b1x2dx=limb+[1x]1b\int_1^{+\infty} \frac{1}{x^2}\,dx = \lim_{b \to +\infty} \int_1^b \frac{1}{x^2}\,dx = \lim_{b \to +\infty} \left[-\frac{1}{x}\right]_1^b
=limb+(1b+1)=1= \lim_{b \to +\infty} \left(-\frac{1}{b} + 1\right) = 1

The integral converges to 1. ∎

Example 1.2: Divergent Type I Integral

Evaluate: 1+1xdx\int_1^{+\infty} \frac{1}{x}\,dx

Solution:

1+1xdx=limb+[lnx]1b=limb+lnb=+\int_1^{+\infty} \frac{1}{x}\,dx = \lim_{b \to +\infty} [\ln x]_1^b = \lim_{b \to +\infty} \ln b = +\infty

The integral diverges. ∎

Section 2: Type II Improper Integrals

Definition 2.1: Type II Improper Integral

If ff has a singularity at aa and is integrable on [a+ε,b][a+\varepsilon, b] for all ε>0\varepsilon > 0, then:

abf(x)dx=limε0+a+εbf(x)dx\int_a^b f(x)\,dx = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x)\,dx

If the limit exists and is finite, the integral converges; otherwise it diverges.

Example 2.1: Convergent Type II Integral

Evaluate: 011xdx\int_0^1 \frac{1}{\sqrt{x}}\,dx

Solution:

011xdx=limε0+ε1x1/2dx=limε0+[2x]ε1\int_0^1 \frac{1}{\sqrt{x}}\,dx = \lim_{\varepsilon \to 0^+} \int_\varepsilon^1 x^{-1/2}\,dx = \lim_{\varepsilon \to 0^+} [2\sqrt{x}]_\varepsilon^1
=limε0+(22ε)=2= \lim_{\varepsilon \to 0^+} (2 - 2\sqrt{\varepsilon}) = 2

The integral converges to 2. ∎

Section 3: Convergence Tests

Theorem 3.1: p-Integral Test (Type I)

The integral 1+1xpdx\int_1^{+\infty} \frac{1}{x^p}\,dx:

  • Converges if p>1p > 1
  • Diverges if p1p \leq 1
Theorem 3.2: p-Integral Test (Type II)

The integral 011xpdx\int_0^1 \frac{1}{x^p}\,dx:

  • Converges if p<1p < 1
  • Diverges if p1p \geq 1
Theorem 3.3: Comparison Test

If 0f(x)g(x)0 \leq f(x) \leq g(x) for xax \geq a:

  • If a+g(x)dx\int_a^{+\infty} g(x)\,dx converges, then a+f(x)dx\int_a^{+\infty} f(x)\,dx converges
  • If a+f(x)dx\int_a^{+\infty} f(x)\,dx diverges, then a+g(x)dx\int_a^{+\infty} g(x)\,dx diverges
Example 3.1: Comparison Test Application

Show: 1+1x2+1dx\int_1^{+\infty} \frac{1}{x^2+1}\,dx converges

Solution: Since 1x2+1<1x2\frac{1}{x^2+1} < \frac{1}{x^2} for x1x \geq 1:

And 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx converges (p = 2 > 1).

By comparison test, 1+1x2+1dx\int_1^{+\infty} \frac{1}{x^2+1}\,dx converges. ∎

Section 4: Absolute Convergence

Definition 4.1: Absolute Convergence

An improper integral a+f(x)dx\int_a^{+\infty} f(x)\,dx is absolutely convergent if:

a+f(x)dx\int_a^{+\infty} |f(x)|\,dx

converges.

Theorem 4.1: Absolute Convergence Implies Convergence

If a+f(x)dx\int_a^{+\infty} |f(x)|\,dx converges, then a+f(x)dx\int_a^{+\infty} f(x)\,dx converges.

Example 4.1: Absolute Convergence

Show: 1+sinxx2dx\int_1^{+\infty} \frac{\sin x}{x^2}\,dx converges

Solution: Since sinxx21x2\left|\frac{\sin x}{x^2}\right| \leq \frac{1}{x^2}:

And 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx converges, so:

1+sinxx2dx\int_1^{+\infty} \left|\frac{\sin x}{x^2}\right|\,dx converges.

Therefore the original integral converges absolutely. ∎

Section 5: Limit Comparison Test

Theorem 5.1: Limit Comparison Test

If f,g0f, g \geq 0 and limx+f(x)g(x)=L\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L where 0<L<0 < L < \infty, then:

a+f(x)dx converges a+g(x)dx converges\int_a^{+\infty} f(x)\,dx \text{ converges } \Leftrightarrow \int_a^{+\infty} g(x)\,dx \text{ converges}
Example 5.1: Application

Determine convergence: 1+x+1x3+2xdx\int_1^{+\infty} \frac{x+1}{x^3+2x}\,dx

As xx \to \infty: x+1x3+2xxx3=1x2\frac{x+1}{x^3+2x} \sim \frac{x}{x^3} = \frac{1}{x^2}

Since 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx converges (p=2>1), the original converges.

Section 6: Cauchy Criterion

Theorem 6.1: Cauchy Criterion for Improper Integrals

a+f(x)dx\int_a^{+\infty} f(x)\,dx converges if and only if:

ε>0,M>a:b,c>M,bcf(x)dx<ε\forall \varepsilon > 0, \exists M > a: \forall b, c > M, \left|\int_b^c f(x)\,dx\right| < \varepsilon

Section 7: Mixed Improper Integrals

Definition 7.1: Mixed Improper Integral

An integral is mixed if it has both infinite limits and singularities. Split at a convenient point and analyze each part separately.

Example 7.1: Mixed Integral

Evaluate: 0+1x2dx\int_0^{+\infty} \frac{1}{x^2}\,dx

This has a singularity at 0 and infinite limit. Split at x=1:

0+1x2dx=011x2dx+1+1x2dx\int_0^{+\infty} \frac{1}{x^2}\,dx = \int_0^1 \frac{1}{x^2}\,dx + \int_1^{+\infty} \frac{1}{x^2}\,dx

Both parts diverge, so the integral diverges.

Practice Quiz: Improper Integrals
10
Questions
0
Correct
0%
Accuracy
1
The integral 1+1x2dx\int_1^{+\infty} \frac{1}{x^2}\,dx is:
Easy
Not attempted
2
The integral 011xdx\int_0^1 \frac{1}{\sqrt{x}}\,dx is:
Easy
Not attempted
3
The integral 1+1xdx\int_1^{+\infty} \frac{1}{x}\,dx is:
Easy
Not attempted
4
To show 1+1x2+1dx\int_1^{+\infty} \frac{1}{x^2+1}dx converges, we compare with:
Medium
Not attempted
5
If limx+f(x)g(x)=L\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L where 0<L<0 < L < \infty, then:
Medium
Not attempted
6
For 0f(x)g(x)0 \leq f(x) \leq g(x) and a+g(x)dx\int_a^{+\infty} g(x)dx converges, then:
Easy
Not attempted
7
The integral 011x0.5dx\int_0^1 \frac{1}{x^{0.5}}dx:
Easy
Not attempted
8
For Type II integrals with singularity at x=a, the p-test says convergence occurs when:
Easy
Not attempted
9
The integral 1+x+1x3+2xdx\int_1^{+\infty} \frac{x+1}{x^3+2x}dx:
Medium
Not attempted
10
For 1+sinxx2dx\int_1^{+\infty} \frac{\sin x}{x^2}dx, which test is most appropriate?
Medium
Not attempted

Frequently Asked Questions

What makes an integral 'improper'?

An integral is improper if either (1) the integration interval is infinite (Type I), or (2) the integrand becomes unbounded at some point in the interval (Type II). Both types require limits to define.

How do I know if an integral is Type I or Type II?

Type I: Look for ±∞ in the limits. Type II: Check if the function has any singularities (points where it goes to ±∞) within [a,b]. An integral can be both types (mixed).

What is the p-integral test?

For Type I: ∫₁^∞ 1/xᵖ dx converges if p > 1, diverges if p ≤ 1. For Type II: ∫₀¹ 1/xᵖ dx converges if p < 1, diverges if p ≥ 1.

What is the comparison test?

If 0 ≤ f(x) ≤ g(x) and ∫g converges, then ∫f converges. If f(x) ≥ g(x) ≥ 0 and ∫g diverges, then ∫f diverges.

What is absolute convergence?

An improper integral ∫f is absolutely convergent if ∫|f| converges. Absolute convergence implies convergence, but not vice versa.