MathIsimple
π
log
Γ
ζ
Δ
Course 8

Residue Applications to Real Integrals

Apply residue theory to evaluate real integrals, trigonometric integrals, Fourier integrals, and improper integrals with powerful contour integration techniques.

Advanced5-6 hours10 Practice Questions
Learning Objectives
Apply residue theorem to evaluate real definite integrals
Evaluate integrals of rational functions
Compute trigonometric integrals using complex methods
Evaluate Fourier-type integrals
Understand Jordan's lemma and its applications
Close contours in upper or lower half-plane appropriately
Handle integrals with poles on the real axis
Apply residue theory to improper integrals

Integrals of Rational Functions

Theorem 8.1: Evaluation of Real Integrals
To evaluate P(x)Q(x)dx\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)}dx where degQdegP+2\deg Q \geq \deg P + 2 and Q(x)0Q(x) \neq 0 on the real axis:
  1. Find all poles of P(z)Q(z)\frac{P(z)}{Q(z)} in the upper half-plane
  2. Close the contour with a large semicircle in the upper half-plane
  3. Show the arc contribution vanishes as RR \to \infty
  4. Apply the residue theorem and take the limit
Example 8.1

Problem: Evaluate I=dxx2+1I = \int_{-\infty}^{\infty} \frac{dx}{x^2+1}.

Solution:

Step 1: Poles of f(z)=1z2+1=1(zi)(z+i)f(z) = \frac{1}{z^2+1} = \frac{1}{(z-i)(z+i)} are at z=±iz = \pm i. Only z=iz = i is in the upper half-plane.

Step 2: Close with semicircle CRC_R in upper half-plane. On the arc, f(z)1R21|f(z)| \leq \frac{1}{R^2-1}, so the arc integral vanishes as RR \to \infty.

Step 3: Res(f,i)=limzi(zi)1(zi)(z+i)=12i\text{Res}(f,i) = \lim_{z\to i} (z-i) \cdot \frac{1}{(z-i)(z+i)} = \frac{1}{2i}

Step 4: I=2πi12i=πI = 2\pi i \cdot \frac{1}{2i} = \pi

Trigonometric Integrals

Theorem 8.2: Evaluation of Trigonometric Integrals
To evaluate 02πR(cosθ,sinθ)dθ\int_0^{2\pi} R(\cos\theta, \sin\theta)d\theta where RR is a rational function:
  1. Substitute z=eiθz = e^{i\theta}, so cosθ=z+z12\cos\theta = \frac{z+z^{-1}}{2}, sinθ=zz12i\sin\theta = \frac{z-z^{-1}}{2i}, dθ=dzizd\theta = \frac{dz}{iz}
  2. The integral becomes z=1R(z+z12,zz12i)dziz\oint_{|z|=1} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right)\frac{dz}{iz}
  3. Evaluate using the residue theorem
Example 8.2

Problem: Evaluate I=02πdθ2+cosθI = \int_0^{2\pi} \frac{d\theta}{2+\cos\theta}.

Solution:

Substituting z=eiθz = e^{i\theta}: cosθ=z+z12\cos\theta = \frac{z+z^{-1}}{2}, dθ=dzizd\theta = \frac{dz}{iz}

I=z=112+z+z12dziz=z=12dzi(z2+4z+1)I = \oint_{|z|=1} \frac{1}{2+\frac{z+z^{-1}}{2}} \cdot \frac{dz}{iz} = \oint_{|z|=1} \frac{2dz}{i(z^2+4z+1)}

Poles: z2+4z+1=0z^2+4z+1 = 0 gives z=2±3z = -2 \pm \sqrt{3}. Only z0=2+3z_0 = -2+\sqrt{3} is inside z=1|z|=1.

Res(f,z0)=limzz02i1z+2+3=2i23=1i3\text{Res}(f,z_0) = \lim_{z\to z_0} \frac{2}{i} \cdot \frac{1}{z+2+\sqrt{3}} = \frac{2}{i\cdot 2\sqrt{3}} = \frac{1}{i\sqrt{3}}

Therefore: I=2πi1i3=2π3I = 2\pi i \cdot \frac{1}{i\sqrt{3}} = \frac{2\pi}{\sqrt{3}}

Fourier Integrals

Theorem 8.3: Jordan's Lemma
If f(z)f(z) is analytic in the upper half-plane except for finitely many poles, and f(z)0|f(z)| \to 0 uniformly as z|z| \to \infty in the upper half-plane, then for a>0a > 0:
limRCRf(z)eiazdz=0\lim_{R\to\infty} \int_{C_R} f(z)e^{iaz}dz = 0
where CRC_R is the semicircle z=R|z| = R, Im z0\text{Im } z \geq 0.
Example 8.3

Problem: Evaluate I=cosxx2+1dxI = \int_{-\infty}^{\infty} \frac{\cos x}{x^2+1}dx.

Solution:

Write I=Re[eixx2+1dx]I = \text{Re}\left[\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2+1}dx\right]

Consider eizz2+1dz\int_{-\infty}^{\infty} \frac{e^{iz}}{z^2+1}dz. Pole at z=iz=i in upper half-plane.

By Jordan's lemma, the arc contribution vanishes. Res(eizz2+1,i)=ei22i=e12i\text{Res}\left(\frac{e^{iz}}{z^2+1}, i\right) = \frac{e^{i^2}}{2i} = \frac{e^{-1}}{2i}

Therefore: eixx2+1dx=2πie12i=πe1\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2+1}dx = 2\pi i \cdot \frac{e^{-1}}{2i} = \pi e^{-1}

Taking real part: I=πeI = \frac{\pi}{e}

Example 8.4

Problem: Evaluate 0dxx4+1\int_0^{\infty} \frac{dx}{x^4 + 1}.

Solution:

Since the integrand is even: I=12dxx4+1I = \frac{1}{2}\int_{-\infty}^{\infty} \frac{dx}{x^4+1}

Poles: z4=1=eiπz^4 = -1 = e^{i\pi}, so z=ei(π+2kπ)/4z = e^{i(\pi + 2k\pi)/4} for k=0,1,2,3k = 0,1,2,3

In the upper half-plane: z1=eiπ/4z_1 = e^{i\pi/4}, z2=ei3π/4z_2 = e^{i3\pi/4}

Computing residues and applying residue theorem gives I=π22I = \frac{\pi}{2\sqrt{2}}.

Example 8.5

Problem: Evaluate 0sinxxdx\int_0^{\infty} \frac{\sin x}{x}dx.

Solution:

Consider eixxdx\int_{-\infty}^{\infty} \frac{e^{ix}}{x}dx with a small indentation around z=0z = 0.

The integral equals πi\pi i (from the small semicircle contribution). Taking imaginary part: 0sinxxdx=π2\int_0^{\infty} \frac{\sin x}{x}dx = \frac{\pi}{2}.

Jordan's Lemma - Detailed Proof

Proof of Jordan's Lemma:

On the semicircle CR:z=ReiθC_R: z = Re^{i\theta} for 0θπ0 \leq \theta \leq \pi and a>0a > 0:

CRf(z)eiazdz0πf(Reiθ)eiaReiθiReiθdθ\left|\int_{C_R} f(z)e^{iaz}dz\right| \leq \int_0^{\pi} |f(Re^{i\theta})| \cdot |e^{iaRe^{i\theta}}| \cdot |iRe^{i\theta}|d\theta

eiaReiθ=eiaR(cosθ+isinθ)=eaRsinθ|e^{iaRe^{i\theta}}| = |e^{iaR(\cos\theta + i\sin\theta)}| = e^{-aR\sin\theta}

For 0θπ0 \leq \theta \leq \pi, sinθ0\sin\theta \geq 0, so eaRsinθ1e^{-aR\sin\theta} \leq 1. But more importantly, on [0,π][0, \pi], sinθ2θ/π\sin\theta \geq 2\theta/\pi for θ[0,π/2]\theta \in [0, \pi/2], giving exponential decay.

If f(z)MR|f(z)| \leq M_R and MR0M_R \to 0 as RR \to \infty, then the integral tends to 0.

Keyhole Contour Integration

Example 8.6

Problem: Evaluate 0xα11+xdx\int_0^{\infty} \frac{x^{\alpha-1}}{1+x}dx where 0<α<10 < \alpha < 1.

Solution:

Use a keyhole contour avoiding the branch cut along the positive real axis.

The function zα1/(1+z)z^{\alpha-1}/(1+z) has a simple pole at z=1z = -1.

After computing contributions from all parts of the contour and taking the limit, we get:

0xα11+xdx=πsin(απ)\int_0^{\infty} \frac{x^{\alpha-1}}{1+x}dx = \frac{\pi}{\sin(\alpha\pi)}

Study Tips

1. Choosing the Right Contour

For integrals over (,)(-\infty, \infty), close with a semicircle. Choose upper or lower half-plane based on where poles lie and exponential decay. For [0,)[0, \infty) with branch points, use keyhole contours.

2. Jordan's Lemma

Use when you have eiaxe^{iax} with a>0a > 0. Close in upper half-plane so the exponential decays on the arc. For a<0a < 0, close in lower half-plane.

3. Handling Poles on Real Axis

Use indented contours with small semicircles around poles. The contribution from these semicircles is πi\pi i times the residue (with appropriate sign).

More Real Integral Examples

Example 8.7

Problem: Evaluate x2x4+1dx\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1}dx.

Solution:

Poles of z2/(z4+1)z^2/(z^4+1) in upper half-plane: z=eiπ/4z = e^{i\pi/4}, z=ei3π/4z = e^{i3\pi/4}

Computing residues and applying residue theorem:

Res(f,eiπ/4)=eiπ/24ei3π/4=i4ei3π/4=ei3π/44i\text{Res}(f,e^{i\pi/4}) = \frac{e^{i\pi/2}}{4e^{i3\pi/4}} = \frac{i}{4e^{i3\pi/4}} = \frac{e^{-i3\pi/4}}{4}i

Similar calculation for the other pole. After summing residues, the integral equals π2\frac{\pi}{\sqrt{2}}.

Example 8.8

Problem: Evaluate 0cos(ax)x2+b2dx\int_0^{\infty} \frac{\cos(ax)}{x^2 + b^2}dx where a,b>0a, b > 0.

Solution:

Consider eiaxx2+b2dx\int_{-\infty}^{\infty} \frac{e^{iax}}{x^2 + b^2}dx. The function has a pole at z=ibz = ib in the upper half-plane.

Res(eiazz2+b2,ib)=eia(ib)2ib=eab2ib\text{Res}\left(\frac{e^{iaz}}{z^2 + b^2}, ib\right) = \frac{e^{ia(ib)}}{2ib} = \frac{e^{-ab}}{2ib}

By residue theorem: eiaxx2+b2dx=2πieab2ib=πeabb\int_{-\infty}^{\infty} \frac{e^{iax}}{x^2 + b^2}dx = 2\pi i \cdot \frac{e^{-ab}}{2ib} = \frac{\pi e^{-ab}}{b}

Taking real part and using evenness: 0cos(ax)x2+b2dx=πeab2b\int_0^{\infty} \frac{\cos(ax)}{x^2 + b^2}dx = \frac{\pi e^{-ab}}{2b}

Example 8.9

Problem: Evaluate 0xsinxx2+a2dx\int_0^{\infty} \frac{x\sin x}{x^2 + a^2}dx where a>0a > 0.

Solution:

Consider xeixx2+a2dx\int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 + a^2}dx. The function has a pole at z=iaz = ia.

Res(zeizz2+a2,ia)=iaei(ia)2ia=ea2\text{Res}\left(\frac{ze^{iz}}{z^2 + a^2}, ia\right) = \frac{iae^{i(ia)}}{2ia} = \frac{e^{-a}}{2}

The integral equals 2πiea2=πiea2\pi i \cdot \frac{e^{-a}}{2} = \pi i e^{-a}

Taking imaginary part and using oddness: 0xsinxx2+a2dx=πea2\int_0^{\infty} \frac{x\sin x}{x^2 + a^2}dx = \frac{\pi e^{-a}}{2}

Trigonometric Integral Techniques

Example 8.10

Problem: Evaluate 02πdθ53cosθ\int_0^{2\pi} \frac{d\theta}{5 - 3\cos\theta}.

Solution:

Using z=eiθz = e^{i\theta}: cosθ=z+z12\cos\theta = \frac{z+z^{-1}}{2}, dθ=dzizd\theta = \frac{dz}{iz}

I=z=1153(z+z1)/2dziz=z=12dzi(10z3z23)I = \oint_{|z|=1} \frac{1}{5 - 3(z+z^{-1})/2} \cdot \frac{dz}{iz} = \oint_{|z|=1} \frac{2dz}{i(10z - 3z^2 - 3)}

Solving 3z210z+3=03z^2 - 10z + 3 = 0 gives z=1/3z = 1/3 and z=3z = 3. Only z=1/3z = 1/3 is inside the unit circle.

Computing the residue and applying residue theorem gives I=π2I = \frac{\pi}{2}.

Example 8.11

Problem: Evaluate 0dx(x2+1)(x2+4)\int_0^{\infty} \frac{dx}{(x^2+1)(x^2+4)}.

Solution:

Since the integrand is even: I=12dx(x2+1)(x2+4)I = \frac{1}{2}\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}

Poles in upper half-plane: z=iz = i and z=2iz = 2i

Computing residues and summing gives I=π6I = \frac{\pi}{6}.

Example 8.12

Problem: Evaluate 02πdθ3+2cosθ\int_0^{2\pi} \frac{d\theta}{3 + 2\cos\theta}.

Solution:

Using z=eiθz = e^{i\theta}: I=z=1dziz(3+z+z1)=z=1dzi(3z+z2+1)I = \oint_{|z|=1} \frac{dz}{iz(3 + z + z^{-1})} = \oint_{|z|=1} \frac{dz}{i(3z + z^2 + 1)}

Solving z2+3z+1=0z^2 + 3z + 1 = 0, only one root is inside the unit circle. Computing the residue gives I=2π5I = \frac{2\pi}{\sqrt{5}}.

Example 8.13

Problem: Evaluate 0x2x4+5x2+4dx\int_0^{\infty} \frac{x^2}{x^4 + 5x^2 + 4}dx.

Solution:

Factor: x4+5x2+4=(x2+1)(x2+4)x^4 + 5x^2 + 4 = (x^2+1)(x^2+4)

Using partial fractions and residue theorem on the upper half-plane gives I=π6I = \frac{\pi}{6}.

Example 8.14

Problem: Evaluate 0sin2xx2dx\int_0^{\infty} \frac{\sin^2 x}{x^2}dx.

Solution:

Use sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}, so:

I=1201cos2xx2dx=120dxx2120cos2xx2dxI = \frac{1}{2}\int_0^{\infty} \frac{1 - \cos 2x}{x^2}dx = \frac{1}{2}\int_0^{\infty} \frac{dx}{x^2} - \frac{1}{2}\int_0^{\infty} \frac{\cos 2x}{x^2}dx

Using integration by parts and known results, I=π2I = \frac{\pi}{2}.

Example 8.15

Problem: Evaluate 0dx(x2+1)n+1\int_0^{\infty} \frac{dx}{(x^2+1)^{n+1}} for positive integer nn.

Solution:

Since the integrand is even: I=12dx(x2+1)n+1I = \frac{1}{2}\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^{n+1}}

The function has an (n+1)(n+1)th order pole at z=iz = i in the upper half-plane.

Computing the residue using the derivative formula:

Res(f,i)=1n!limzidndzn[1(z+i)n+1]\text{Res}(f,i) = \frac{1}{n!}\lim_{z\to i} \frac{d^n}{dz^n}\left[\frac{1}{(z+i)^{n+1}}\right]

After computation: I=π(2n1)!!2(2n)!!I = \frac{\pi(2n-1)!!}{2(2n)!!}

Example 8.16

Problem: Evaluate 0xsinxx2+a2dx\int_0^{\infty} \frac{x\sin x}{x^2 + a^2}dx where a>0a > 0.

Solution:

Consider xeixx2+a2dx\int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 + a^2}dx. The pole at z=iaz = ia gives:

Res(zeizz2+a2,ia)=iaea2ia=ea2\text{Res}\left(\frac{ze^{iz}}{z^2 + a^2}, ia\right) = \frac{iae^{-a}}{2ia} = \frac{e^{-a}}{2}

The integral equals 2πiea2=πiea2\pi i \cdot \frac{e^{-a}}{2} = \pi i e^{-a}

Taking imaginary part: 0xsinxx2+a2dx=πea2\int_0^{\infty} \frac{x\sin x}{x^2 + a^2}dx = \frac{\pi e^{-a}}{2}

Example 8.17

Problem: Evaluate 02πdθa+bcosθ\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} where b<a|b| < |a|.

Solution:

Using z=eiθz = e^{i\theta} substitution:

I=z=1dziz(a+b(z+z1)/2)=z=12dzi(2az+bz2+b)I = \oint_{|z|=1} \frac{dz}{iz(a + b(z+z^{-1})/2)} = \oint_{|z|=1} \frac{2dz}{i(2az + bz^2 + b)}

Solving the quadratic and applying residue theorem gives I=2πa2b2I = \frac{2\pi}{\sqrt{a^2 - b^2}}.

Example 8.18

Problem: Evaluate 0cos(px)cos(qx)x2dx\int_0^{\infty} \frac{\cos(px) - \cos(qx)}{x^2}dx where p,q>0p, q > 0.

Solution:

Using integration by parts and known results for 01cos(ax)x2dx\int_0^{\infty} \frac{1-\cos(ax)}{x^2}dx, we get:

I=π2(qp)I = \frac{\pi}{2}(q - p).

Example 8.19

Problem: Evaluate eixx2+4x+5dx\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + 4x + 5}dx.

Solution:

Complete the square: x2+4x+5=(x+2)2+1x^2 + 4x + 5 = (x+2)^2 + 1

The poles are at z=2±iz = -2 \pm i. Only z=2+iz = -2 + i is in the upper half-plane.

Computing the residue and applying the residue theorem gives I=πe12iI = \pi e^{-1-2i}.

Example 8.20

Problem: Evaluate 0sin3xx3dx\int_0^{\infty} \frac{\sin^3 x}{x^3}dx.

Solution:

Using sin3x=3sinxsin3x4\sin^3 x = \frac{3\sin x - \sin 3x}{4} and known results:

I=3π32I = \frac{3\pi}{32}.

Example 8.21

Problem: Evaluate 0dxx4+1\int_0^{\infty} \frac{dx}{x^4 + 1}.

Solution:

Since the integrand is even: I=12dxx4+1I = \frac{1}{2}\int_{-\infty}^{\infty} \frac{dx}{x^4+1}

The poles in the upper half-plane are at z=eiπ/4z = e^{i\pi/4} and z=ei3π/4z = e^{i3\pi/4}.

Computing residues and summing gives I=π22I = \frac{\pi}{2\sqrt{2}}.

Example 8.22

Problem: Evaluate 0sin(px)sin(qx)x2dx\int_0^{\infty} \frac{\sin(px)\sin(qx)}{x^2}dx where p,q>0p, q > 0.

Solution:

Using trigonometric identities and integration by parts:

I=π4(p+qpq)I = \frac{\pi}{4}(|p+q| - |p-q|)

Example 8.23

Problem: Evaluate 0cos(ax)cos(bx)x2dx\int_0^{\infty} \frac{\cos(ax) - \cos(bx)}{x^2}dx where a,b>0a, b > 0.

Solution:

Write I=01cos(bx)x2dx01cos(ax)x2dxI = \int_0^{\infty} \frac{1-\cos(bx)}{x^2}dx - \int_0^{\infty} \frac{1-\cos(ax)}{x^2}dx

Using known results: 01cos(cx)x2dx=πc2\int_0^{\infty} \frac{1-\cos(cx)}{x^2}dx = \frac{\pi c}{2}

Therefore: I=π2(ba)I = \frac{\pi}{2}(b - a)

Example 8.24

Problem: Evaluate 02πdθ(a+bcosθ)2\int_0^{2\pi} \frac{d\theta}{(a + b\cos\theta)^2} where b<a|b| < |a|.

Solution:

Using z=eiθz = e^{i\theta} substitution and computing residues:

I=2πa(a2b2)3/2I = \frac{2\pi a}{(a^2-b^2)^{3/2}}

Example 8.25

Problem: Evaluate 0x2(x2+1)(x2+4)dx\int_0^{\infty} \frac{x^2}{(x^2+1)(x^2+4)}dx.

Solution:

Using partial fractions and residue theorem on the upper half-plane:

I=π6I = \frac{\pi}{6}

Example 8.26

Problem: Use Jordan's lemma to show that limRCReizz2+1dz=0\lim_{R\to\infty} \int_{C_R} \frac{e^{iz}}{z^2+1}dz = 0 where CRC_R is the semicircle z=R|z| = R in the upper half-plane.

Solution:

On CRC_R, we have z=Reiθz = Re^{i\theta} for θ[0,π]\theta \in [0, \pi].

For zz in the upper half-plane, Im(z)0\text{Im}(z) \geq 0, so eiz=eIm(z)1|e^{iz}| = e^{-\text{Im}(z)} \leq 1.

Also, z2+1z21=R21|z^2+1| \geq |z|^2 - 1 = R^2 - 1 for large RR.

Therefore: eizz2+11R21\left|\frac{e^{iz}}{z^2+1}\right| \leq \frac{1}{R^2-1}

By ML inequality: CReizz2+1dzπRR210\left|\int_{C_R} \frac{e^{iz}}{z^2+1}dz\right| \leq \frac{\pi R}{R^2-1} \to 0 as RR \to \infty.

This is a direct application of Jordan's lemma: since f(z)=1/(z2+1)0f(z) = 1/(z^2+1) \to 0 uniformly as z|z| \to \infty and a=1>0a = 1 > 0, the integral vanishes.

Example 8.27

Problem: Evaluate 0cos(ax)x2+b2dx\int_0^{\infty} \frac{\cos(ax)}{x^2+b^2}dx for a>0a > 0 and b>0b > 0 using Jordan's lemma.

Solution:

Consider I=eiaxx2+b2dxI = \int_{-\infty}^{\infty} \frac{e^{iax}}{x^2+b^2}dx, so 0cos(ax)x2+b2dx=12Re(I)\int_0^{\infty} \frac{\cos(ax)}{x^2+b^2}dx = \frac{1}{2}\text{Re}(I).

Close the contour in the upper half-plane (since a>0a > 0). The poles are at z=±ibz = \pm ib, but only z=ibz = ib is in the upper half-plane.

By Jordan's lemma, the integral over the large semicircle vanishes as RR \to \infty.

Residue at z=ibz = ib: Res(eiazz2+b2,ib)=eia(ib)2ib=eab2ib\text{Res}\left(\frac{e^{iaz}}{z^2+b^2}, ib\right) = \frac{e^{ia(ib)}}{2ib} = \frac{e^{-ab}}{2ib}

By residue theorem: I=2πieab2ib=πeabbI = 2\pi i \cdot \frac{e^{-ab}}{2ib} = \frac{\pi e^{-ab}}{b}

Therefore: 0cos(ax)x2+b2dx=12πeabb=πeab2b\int_0^{\infty} \frac{\cos(ax)}{x^2+b^2}dx = \frac{1}{2} \cdot \frac{\pi e^{-ab}}{b} = \frac{\pi e^{-ab}}{2b}

Practice Problems

Residue Applications to Real Integrals Practice
10
Questions
0
Correct
0%
Accuracy
1
To evaluate dxx2+1\int_{-\infty}^{\infty} \frac{dx}{x^2+1} using residues, we typically:
Medium
Not attempted
2
Jordan's lemma applies to integrals of the form RRf(x)eiaxdx\int_{-R}^{R} f(x)e^{iax}dx where a>0a > 0 and helps show:
Hard
Not attempted
3
The value of 02πdθa+bcosθ\int_0^{2\pi} \frac{d\theta}{a+b\cos\theta} where b<a|b| < |a| can be found by:
Medium
Not attempted
4
For cosxx2+1dx\int_{-\infty}^{\infty} \frac{\cos x}{x^2+1}dx, we use:
Medium
Not attempted
5
When evaluating 0xα1+x2dx\int_0^{\infty} \frac{x^\alpha}{1+x^2}dx using residues, we typically:
Hard
Not attempted
6
The integral 0sinxxdx\int_0^{\infty} \frac{\sin x}{x}dx evaluates to:
Hard
Not attempted
7
For P(x)Q(x)dx\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)}dx where degQdegP+2\deg Q \geq \deg P + 2, the integral:
Medium
Not attempted
8
When a pole lies on the real axis, we typically:
Hard
Not attempted
9
To evaluate 0dx1+x4\int_0^{\infty} \frac{dx}{1+x^4}, we can:
Hard
Not attempted
10
The integral 02πcos2nθdθ\int_0^{2\pi} \cos^{2n}\theta d\theta can be evaluated using:
Hard
Not attempted

Frequently Asked Questions

Why use complex analysis to evaluate real integrals?

Many real integrals that are difficult or impossible to evaluate using real analysis techniques become straightforward using residue theory. The residue theorem provides a systematic method for evaluating a wide class of integrals.

What is Jordan's lemma?

Jordan's lemma states that for $a > 0$, if $f(z) \to 0$ uniformly as $|z| \to \infty$ in the upper half-plane, then $\lim_{R\to\infty} \int_{C_R} f(z)e^{iaz}dz = 0$ where $C_R$ is a semicircle of radius $R$. This is crucial for closing contours.

How do I choose whether to close in the upper or lower half-plane?

For $\int_{-\infty}^{\infty} f(x)e^{iax}dx$: if $a > 0$, close in the upper half-plane (so $e^{iaz}$ decays on the arc); if $a < 0$, close in the lower half-plane. For rational functions, choose the half-plane containing the poles.

What if there are poles on the real axis?

Use an indented contour: make a small semicircular detour around each pole on the real axis. The contribution from these small arcs is $\pi i$ times the residue for a simple pole (with appropriate sign depending on whether the indentation goes above or below the pole).

When can I use a keyhole contour?

Keyhole contours are used for integrals involving functions with branch points, such as $x^\alpha$ for non-integer $\alpha$ or logarithms. The contour avoids the branch cut and circles the branch point.