A comprehensive reference of all major trigonometric identity transformations. These formulas are essential for solving complex trigonometric equations, simplifying expressions, and performing calculus operations involving trigonometric functions.
sin(2α) = 2sin(α)cos(α)
cos(2α) = cos²(α) - sin²(α)
cos(2α) = 2cos²(α) - 1
cos(2α) = 1 - 2sin²(α)
cos(2α) = (cos(α) + sin(α))(cos(α) - sin(α))
tan(2α) = 2tan(α)/(1 - tan²(α))
Note: Requires tan(α) ≠ ±1 (denominator ≠ 0)
1 + cos(α) = 2cos²(α/2)
1 - cos(α) = 2sin²(α/2)
sin²(α) = (1 - cos(2α))/2
cos²(α) = (1 + cos(2α))/2
tan²(α) = (1 - cos(2α))/(1 + cos(2α))
sin(α/2) = ±√[(1 - cos(α))/2]
cos(α/2) = ±√[(1 + cos(α))/2]
tan(α/2) = ±√[(1 - cos(α))/(1 + cos(α))]
Sign determined by the quadrant of α/2
tan(α/2) = (1 - cos(α))/sin(α)
tan(α/2) = sin(α)/(1 + cos(α))
These forms avoid the ± ambiguity
sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)
sin(A) - sin(B) = 2cos((A+B)/2)sin((A-B)/2)
cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)
cos(A) - cos(B) = -2sin((A+B)/2)sin((A-B)/2)
Let A = (A+B)/2 + (A-B)/2 and B = (A+B)/2 - (A-B)/2, then substitute α = (A+B)/2 and β = (A-B)/2
sin(A)cos(B) = ½[sin(A+B) + sin(A-B)]
cos(A)cos(B) = ½[cos(A+B) + cos(A-B)]
sin(A)sin(B) = ½[cos(A-B) - cos(A+B)]
These formulas are derived from the sine and cosine sum/difference formulas by adding or subtracting appropriate pairs.
sin(3α) = 3sin(α) - 4sin³(α)
sin(3α) = 4sin(α)sin(π/3 - α)sin(π/3 + α)
cos(3α) = 4cos³(α) - 3cos(α)
cos(3α) = 4cos(α)cos(π/3 - α)cos(π/3 + α)
tan(3α) = (3tan(α) - tan³(α))/(1 - 3tan²(α))
tan(3α) = tan(α)tan(π/3 - α)tan(π/3 + α)
Note: Requires 1 - 3tan²(α) ≠ 0
sin(15°) = (√6 - √2)/4
cos(15°) = (√6 + √2)/4
tan(15°) = 2 - √3
sin(22.5°) = √(2 - √2)/2
cos(22.5°) = √(2 + √2)/2
tan(22.5°) = √2 - 1