MathSimpler
← Back to Trigonometry

Trigonometric Identity Transformations

Master the essential trigonometric identities that transform expressions involving multiple angles. These formulas are fundamental for solving complex trigonometric equations and simplifying expressions. Learn double angle formulas, half angle formulas, sum-to-product identities, and more with complete derivations and practical applications.

1. Double Angle Formulas
Expressing trigonometric functions of 2α in terms of α

Sine Double Angle

sin(2α)=2sin(α)cos(α)\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)

Derivation: From the sum formula sin(α+β)=sin(α)cos(β)+cos(α)sin(β)\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta), let β=α\beta = \alpha: sin(2α)=sin(α+α)=sin(α)cos(α)+cos(α)sin(α)=2sin(α)cos(α)\sin(2\alpha) = \sin(\alpha + \alpha) = \sin(\alpha)\cos(\alpha) + \cos(\alpha)\sin(\alpha) = 2\sin(\alpha)\cos(\alpha)

Cosine Double Angle (Three Forms)

cos(2α)=cos2(α)sin2(α)\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)

Basic form

cos(2α)=2cos2(α)1\cos(2\alpha) = 2\cos^2(\alpha) - 1

Using sin2α=1cos2α\sin^2\alpha = 1 - \cos^2\alpha

cos(2α)=12sin2(α)\cos(2\alpha) = 1 - 2\sin^2(\alpha)

Using cos2α=1sin2α\cos^2\alpha = 1 - \sin^2\alpha

Tangent Double Angle

tan(2α)=2tan(α)1tan2(α)\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}

Condition: tan(α)±1\tan(\alpha) \neq \pm 1 (denominator must be non-zero)

Examples

sin(2α)=2sin(α)cos(α)\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)
sin(60°)=2sin(30°)cos(30°)=2×12×32=32\sin(60°) = 2\sin(30°)\cos(30°) = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}
cos(2α)=cos2(α)sin2(α)\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)
cos(60°)=cos2(30°)sin2(30°)=(32)2(12)2=12\cos(60°) = \cos^2(30°) - \sin^2(30°) = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}
cos(2α)=2cos2(α)1\cos(2\alpha) = 2\cos^2(\alpha) - 1
cos(60°)=2cos2(30°)1=2×(32)21=12\cos(60°) = 2\cos^2(30°) - 1 = 2 \times \left(\frac{\sqrt{3}}{2}\right)^2 - 1 = \frac{1}{2}
cos(2α)=12sin2(α)\cos(2\alpha) = 1 - 2\sin^2(\alpha)
cos(60°)=12sin2(30°)=12×(12)2=12\cos(60°) = 1 - 2\sin^2(30°) = 1 - 2 \times \left(\frac{1}{2}\right)^2 = \frac{1}{2}
2. Half Angle Formulas
Expressing trigonometric functions of α/2 in terms of α

Power Reduction Identities

sin2(α)=1cos(2α)2\sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2}

cos2(α)=1+cos(2α)2\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2}

These are derived by rearranging the double angle formulas for cosine.

Half Angle Formulas

sin(α/2)=±1cosα2\sin(\alpha/2) = \pm\sqrt{\frac{1 - \cos \alpha}{2}}

Sign determined by the quadrant of α/2\alpha/2

cos(α/2)=±1+cosα2\cos(\alpha/2) = \pm\sqrt{\frac{1 + \cos \alpha}{2}}

Sign determined by the quadrant of α/2\alpha/2

tan(α/2)=1cosαsinα=sinα1+cosα\tan(\alpha/2) = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}

Two equivalent forms that avoid the ± ambiguity

Examples

sin(α/2)=±1cosα2\sin(\alpha/2) = \pm\sqrt{\frac{1 - \cos \alpha}{2}}
sin(15°)=1cos30°2=1322=624\sin(15°) = \sqrt{\frac{1 - \cos 30°}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}
cos(α/2)=±1+cosα2\cos(\alpha/2) = \pm\sqrt{\frac{1 + \cos \alpha}{2}}
cos(15°)=1+cos30°2=1+322=6+24\cos(15°) = \sqrt{\frac{1 + \cos 30°}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}
tan(α/2)=1cosαsinα\tan(\alpha/2) = \frac{1 - \cos \alpha}{\sin \alpha}
tan(15°)=1cos30°sin30°=13212=23\tan(15°) = \frac{1 - \cos 30°}{\sin 30°} = \frac{1 - \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 2 - \sqrt{3}
3. Sum-to-Product and Product-to-Sum Formulas
Converting between sums/differences and products of trigonometric functions

Sum-to-Product Formulas

sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)

sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)

cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)

cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)

Product-to-Sum Formulas

sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]

cosAcosB=12[cos(A+B)+cos(AB)]\cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]

sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]

Example Applications

Sum-to-Product:
sin70°+sin10°=2sin(40°)cos(30°)=2sin(40°)×32=3sin(40°)\sin 70° + \sin 10° = 2\sin(40°)\cos(30°) = 2\sin(40°) \times \frac{\sqrt{3}}{2} = \sqrt{3} \sin(40°)
Product-to-Sum:
sin50°cos20°=12[sin(70°)+sin(30°)]=12[sin(70°)+12]\sin 50°\cos 20° = \frac{1}{2}[\sin(70°) + \sin(30°)] = \frac{1}{2}\left[\sin(70°) + \frac{1}{2}\right]
4. Triple Angle Formulas
Expressing trigonometric functions of 3α in terms of α

Sine Triple Angle

sin(3α)=3sin(α)4sin3(α)\sin(3\alpha) = 3\sin(\alpha) - 4\sin^3(\alpha)

Derivation: sin(3α)=sin(2α+α)=sin(2α)cos(α)+cos(2α)sin(α)\sin(3\alpha) = \sin(2\alpha + \alpha) = \sin(2\alpha)\cos(\alpha) + \cos(2\alpha)\sin(\alpha)

Substituting formulas and simplifying leads to the cubic form.

Cosine Triple Angle

cos(3α)=4cos3(α)3cos(α)\cos(3\alpha) = 4\cos^3(\alpha) - 3\cos(\alpha)

Derivation: cos(3α)=cos(2α+α)=cos(2α)cos(α)sin(2α)sin(α)\cos(3\alpha) = \cos(2\alpha + \alpha) = \cos(2\alpha)\cos(\alpha) - \sin(2\alpha)\sin(\alpha)

Similar substitution and simplification process.

Example Calculation

Verify sin(90°)\sin(90°) using triple angle formula:

sin(90°)=sin(3×30°)=3sin(30°)4sin3(30°)\sin(90°) = \sin(3 \times 30°) = 3\sin(30°) - 4\sin^3(30°)

=3×124×(12)3=324×18=3212=1= 3 \times \frac{1}{2} - 4 \times \left(\frac{1}{2}\right)^3 = \frac{3}{2} - 4 \times \frac{1}{8} = \frac{3}{2} - \frac{1}{2} = 1

5. Key Applications and Problem-Solving Strategies
When and how to use these identity transformations effectively

Common Problem Types

  • Simplification: Reduce complex expressions using appropriate identities
  • Equation solving: Transform equations to standard forms
  • Integration: Power reduction for integrating trigonometric functions
  • Verification: Prove trigonometric identities step by step

Strategy Selection

  • • Use double angle when you see 2α terms
  • • Use half angle when dealing with α/2 or square roots
  • • Use sum-to-product to simplify sums of trig functions
  • • Use product-to-sum for products of different angles