Master trigonometric functions, identities, and formulas. From basic ratios to advanced transformations.
The sine function relates the angle in a right triangle to the ratio of the opposite side to the hypotenuse. In the unit circle, sin(θ) is the y-coordinate of the point on the circle.
Definition Formula
Period
2π
Amplitude
1
Range
[-1, 1]
Zeros
x = nπ
Transformations
y = A·sin(Bx + C) + D where A = amplitude, 2π/B = period, -C/B = phase shift, D = vertical shift
The cosine function relates the angle to the ratio of the adjacent side to the hypotenuse. In the unit circle, cos(θ) is the x-coordinate of the point on the circle.
Definition Formula
Period
2π
Amplitude
1
Range
[-1, 1]
Zeros
x = π/2 + nπ
Key Identity
The Pythagorean identity: sin²(x) + cos²(x) = 1 — the most fundamental trig identity
The tangent function is the ratio of sine to cosine. It represents the slope of the line from the origin to the point on the unit circle, or opposite/adjacent in a right triangle.
Definition Formula
Period
π
Amplitude
None
Range
(-∞, +∞)
Asymptotes
x = π/2 + nπ
Related Identity
1 + tan²(x) = sec²(x) — derived from dividing sin²(x) + cos²(x) = 1 by cos²(x)
The six trigonometric functions relate angles to ratios of sides in a right triangle.
Sine
Range: [-1, 1]
Cosine
Range: [-1, 1]
Tangent
Range: (-∞, +∞)
Cosecant
Secant
Cotangent
| θ | sin(θ) | cos(θ) | tan(θ) |
|---|---|---|---|
| 0° | 0 | 1 | 0 |
| 30° | 1/2 | √3/2 | √3/3 |
| 45° | √2/2 | √2/2 | 1 |
| 60° | √3/2 | 1/2 | √3 |
| 90° | 1 | 0 | undefined |
Example
Problem: In a right triangle, the opposite side is 3 and hypotenuse is 5. Find sin(θ), cos(θ), and tan(θ).
Solution: sin(θ) = 3/5 = 0.6, adjacent = √(25-9) = 4, cos(θ) = 4/5 = 0.8, tan(θ) = 3/4 = 0.75
These formulas express the trig functions of sums or differences of angles in terms of functions of individual angles.
sin(α + β)
sin(α - β)
cos(α + β)
cos(α - β)
tan(α + β)
tan(α - β)
Example
Problem: Find the exact value of sin(75°).
Solution: sin(75°) = sin(45° + 30°) = sin45°cos30° + cos45°sin30° = (√2/2)(√3/2) + (√2/2)(1/2) = (√6 + √2)/4
Express trig functions of 2θ in terms of functions of θ.
sin(2θ)
cos(2θ) - Form 1
cos(2θ) - Form 2
cos(2θ) - Form 3
tan(2θ)
sin(θ/2)
cos(θ/2)
tan(θ/2)
Example
Problem: If sin(θ) = 3/5 and θ is in Q1, find sin(2θ) and cos(2θ).
Solution: cos(θ) = 4/5 (Q1). sin(2θ) = 2×(3/5)×(4/5) = 24/25. cos(2θ) = (4/5)² - (3/5)² = 16/25 - 9/25 = 7/25
Convert trig functions of any angle to functions of an acute angle (0° to 90°).
| Transform | sin | cos | tan |
|---|---|---|---|
| π - θ (180° - θ) | +sin(θ) | -cos(θ) | -tan(θ) |
| π + θ (180° + θ) | -sin(θ) | -cos(θ) | +tan(θ) |
| 2π - θ (360° - θ) | -sin(θ) | +cos(θ) | -tan(θ) |
| -θ | -sin(θ) | +cos(θ) | -tan(θ) |
| π/2 - θ (90° - θ) | +cos(θ) | +sin(θ) | +cot(θ) |
| π/2 + θ (90° + θ) | +cos(θ) | -sin(θ) | -cot(θ) |
Memory Tip: Memory tip: Odd multiples of 90° swap sin/cos; even multiples keep them. Sign follows the quadrant.
Example
Problem: Find sin(150°), cos(210°), and tan(315°).
Solution: sin(150°) = sin(180°-30°) = sin(30°) = 1/2. cos(210°) = cos(180°+30°) = -cos(30°) = -√3/2. tan(315°) = tan(360°-45°) = -tan(45°) = -1
Pythagorean
sin(α + β)
sin(2θ)
cos(2θ)