MathIsimple
Geometry Spot/Learning Center/Trigonometry/Sum & Difference Identities

Sum & Difference Identities

Master the powerful formulas that express sin(A±B), cos(A±B), and tan(A±B) in terms of the individual angle functions.

45–55 minutes
Intermediate Level
Essential Topic
What Are Sum & Difference Identities?
The foundation for advanced trigonometry

The sum and difference identities allow us to express the sine, cosine, or tangent of a sum or difference of two angles in terms of the trig functions of the individual angles.

The Core Idea:

sin(A+B)sinA+sinB\sin(A + B) \neq \sin A + \sin B

Instead, we need special formulas to expand compound angles!

These identities are foundational for deriving double-angle formulas, half-angle formulas, product-to-sum formulas, and solving many trigonometric equations.

Learning Objectives

  • State and apply the sum and difference formulas for sine.
  • State and apply the sum and difference formulas for cosine.
  • State and apply the sum and difference formulas for tangent.
  • Use these identities to find exact values of non-standard angles.
  • Simplify trigonometric expressions using sum/difference formulas.
  • Prove other identities using these fundamental formulas.
  • Apply these identities to solve real-world problems.

Key Terminology

Sum Identity

Formula expressing trig function of (A + B) using trig functions of A and B.

Difference Identity

Formula expressing trig function of (A - B) using trig functions of A and B.

Compound Angle

An angle expressed as a sum or difference of other angles.

Exact Value

Value expressed using radicals and fractions, not decimal approximations.

Cofunction

sin(90° - θ) = cos(θ) relationship, derivable from difference formulas.

Standard Angles Reference

Memorize these values to use sum/difference formulas effectively:

Anglesincostan
010
30°1/2√3/21/√3
45°√2/2√2/21
60°√3/21/2√3
90°10undefined

Essential Formulas

Sine Sum

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

Same sign as the angle sum.

Sine Difference

sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B

Same sign as the angle difference.

Cosine Sum

cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B

Sign CHANGES: plus becomes minus.

Cosine Difference

cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B

Sign CHANGES: minus becomes plus.

Tangent Sum

tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}

Valid when denominator ≠ 0.

Tangent Difference

tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

Valid when denominator ≠ 0.

Memory Tricks

Sine Formula Pattern

"Sine keeps the sign" - The ± in sin(A ± B) matches the middle sign.

sin(A + B) → + in middle

sin(A - B) → - in middle

Cosine Formula Pattern

"Cosine changes the sign" - The ± in cos(A ± B) becomes ∓.

cos(A + B) → - in middle

cos(A - B) → + in middle

Term Pattern

  • Sine: sin·cos + cos·sin (alternating functions)
  • Cosine: cos·cos - sin·sin (same functions together)
  • Tangent: fraction with sum/difference on top, product term on bottom

Worked Examples

Example 1
Finding sin(75°)

Problem:

Find the exact value of sin(75°).

Solution:

Step 1: Express 75° as a sum of standard angles:

75°=45°+30°75° = 45° + 30°

Step 2: Apply sin(A + B) formula:

sin(75°)=sin(45°+30°)\sin(75°) = \sin(45° + 30°)=sin45°cos30°+cos45°sin30°= \sin 45° \cos 30° + \cos 45° \sin 30°

Step 3: Substitute known values:

=2232+2212= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}=64+24=6+24= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}
Example 2
Finding cos(15°)

Problem:

Find the exact value of cos(15°).

Solution:

Step 1: Express 15° as a difference:

15°=45°30°15° = 45° - 30°

Step 2: Apply cos(A - B) formula (sign changes to +):

cos(15°)=cos(45°30°)\cos(15°) = \cos(45° - 30°)=cos45°cos30°+sin45°sin30°= \cos 45° \cos 30° + \sin 45° \sin 30°

Step 3: Substitute and simplify:

=2232+2212=6+24= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}

Notice: sin(75°) = cos(15°) because they are complementary!

Example 3
Finding tan(105°)

Problem:

Find the exact value of tan(105°).

Solution:

Step 1: Express 105° as 60° + 45°:

tan(105°)=tan(60°+45°)\tan(105°) = \tan(60° + 45°)

Step 2: Apply tan(A + B) formula:

=tan60°+tan45°1tan60°tan45°= \frac{\tan 60° + \tan 45°}{1 - \tan 60° \tan 45°}=3+1131=3+113= \frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}}

Step 3: Rationalize:

=(3+1)(1+3)(13)(1+3)=3+23+113=4+232=23= \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} = \frac{3 + 2\sqrt{3} + 1}{1 - 3} = \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3}
Example 4
Simplifying an Expression

Problem:

Simplify: sin(x + 30°) cos(30°) - cos(x + 30°) sin(30°)

Solution:

Recognize the pattern: sin A cos B - cos A sin B = sin(A - B)

Let A = x + 30° and B = 30°:

sin(x+30°)cos30°cos(x+30°)sin30°\sin(x + 30°)\cos 30° - \cos(x + 30°)\sin 30°=sin[(x+30°)30°]=sin(x)= \sin[(x + 30°) - 30°] = \sin(x)
Example 5
Proving an Identity

Problem:

Prove: cos(90° - θ) = sin(θ)

Solution:

Use cos(A - B) = cos A cos B + sin A sin B:

cos(90°θ)=cos90°cosθ+sin90°sinθ\cos(90° - \theta) = \cos 90° \cos \theta + \sin 90° \sin \theta=0cosθ+1sinθ=sinθ= 0 \cdot \cos \theta + 1 \cdot \sin \theta = \sin \theta

This is the cofunction identity! ✓

Example 6
Using Given Information

Problem:

If sin A = 3/5 (A in Q1) and cos B = 5/13 (B in Q1), find sin(A + B).

Solution:

Step 1: Find missing values using Pythagorean identity:

cosA=1sin2A=19/25=45\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - 9/25} = \frac{4}{5}sinB=1cos2B=125/169=1213\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - 25/169} = \frac{12}{13}

Step 2: Apply sin(A + B):

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B=35513+451213= \frac{3}{5} \cdot \frac{5}{13} + \frac{4}{5} \cdot \frac{12}{13}=1565+4865=6365= \frac{15}{65} + \frac{48}{65} = \frac{63}{65}

More Worked Examples

Example 7
Simplifying Expression

Problem:

Simplify: cos(x + y)cos(y) + sin(x + y)sin(y)

Solution:

cos(x+y)cosy+sin(x+y)siny\cos(x+y)\cos y + \sin(x+y)\sin y=cos[(x+y)y](reverse cos difference)= \cos[(x+y) - y] \quad \text{(reverse cos difference)}=cosx= \cos x
Example 8
Sum of Three Angles

Problem:

Find tan(A + B + C) if tan A = 1, tan B = 2, tan C = 3.

Solution:

tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanAtanC\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan A \tan C}=1+2+3(1)(2)(3)1263=6610=0= \frac{1 + 2 + 3 - (1)(2)(3)}{1 - 2 - 6 - 3} = \frac{6 - 6}{-10} = 0
Example 9
Phase Shift Application

Problem:

Express 3sin x + 4cos x in the form R sin(x + φ).

Solution:

Step 1: Find R:

R=32+42=5R = \sqrt{3^2 + 4^2} = 5

Step 2: Find φ:

tanϕ=43,ϕ=arctan4353.13°\tan\phi = \frac{4}{3}, \quad \phi = \arctan\frac{4}{3} \approx 53.13°

Answer: 3sin x + 4cos x = 5 sin(x + 53.13°)

Example 10
Proving Identity

Problem:

Prove: sin(A + B)sin(A - B) = sin²A - sin²B

Solution:

sin(A+B)sin(AB)\sin(A+B)\sin(A-B)=(sinAcosB+cosAsinB)(sinAcosBcosAsinB)= (\sin A\cos B + \cos A\sin B)(\sin A\cos B - \cos A\sin B)=sin2Acos2Bcos2Asin2B= \sin^2 A\cos^2 B - \cos^2 A\sin^2 B=sin2A(1sin2B)(1sin2A)sin2B= \sin^2 A(1-\sin^2 B) - (1-\sin^2 A)\sin^2 B=sin2Asin2B= \sin^2 A - \sin^2 B \quad \checkmark

Understanding the Derivations

Cosine Difference Formula Proof (Geometric)

  1. Consider two points P and Q on the unit circle at angles A and B from positive x-axis.
  2. P = (cos A, sin A) and Q = (cos B, sin B)
  3. Distance PQ can be calculated using distance formula.
  4. Also, PQ² = 2 - 2cos(A - B) using Law of Cosines on triangle OPQ.
  5. Equating both expressions and simplifying gives the formula.

Deriving Other Formulas

  • cos(A + B): Use cos(A - (-B)) = cos(A + B)
  • sin formulas: Use sin θ = cos(90° - θ) cofunction identity
  • tan formulas: Use tan = sin/cos and divide the formulas

Complete Formula Reference

Sine Formulas

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A\cos B + \cos A\sin B
sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A\cos B - \cos A\sin B

Cosine Formulas

cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A\cos B - \sin A\sin B
cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A\cos B + \sin A\sin B

Tangent Formulas

tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B}
tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A\tan B}

Common Mistakes to Avoid

Wrong sign in cosine formula

cos(A + B) uses MINUS in the middle. cos(A - B) uses PLUS. The sign changes!

Mixing up sine and cosine terms

sin uses 'sin cos + cos sin' pattern. cos uses 'cos cos - sin sin' pattern.

Forgetting tangent restrictions

tan(A ± B) is undefined when tanA tanB = ±1 (denominator = 0).

Not simplifying completely

Always check if your answer can be simplified using known values or other identities.

Wrong angle decomposition

75° = 45° + 30° (not 60° + 15°, though that also works). Choose convenient angles.

Real-World Applications

📡

Signal Processing

Combining waves of different frequencies.

🔬

Physics

Analyzing interference patterns in light and sound.

Engineering

Phase angle calculations in AC circuits.

🎵

Music

Understanding harmonics and beat frequencies.

🧭

Navigation

Calculating bearings and course corrections.

🎮

Computer Graphics

Rotation transformations in 2D and 3D.

Quick Reference Card

Sine

sin(A+B) = sinA cosB + cosA sinB

sin(A-B) = sinA cosB - cosA sinB

Cosine

cos(A+B) = cosA cosB - sinA sinB

cos(A-B) = cosA cosB + sinA sinB

Tangent

tan(A+B) = (tanA+tanB)/(1-tanA tanB)

tan(A-B) = (tanA-tanB)/(1+tanA tanB)

Frequently Asked Questions

Why are these called 'sum and difference' identities?

They express trig functions of (A + B) or (A - B) in terms of trig functions of A and B separately.

How do I remember the sine formula signs?

sin(A ± B) = sinA cosB ± cosA sinB. The sign in the middle matches the ± in the angle. Think: 'Sine keeps the sign.'

How do I remember the cosine formula signs?

cos(A ± B) = cosA cosB ∓ sinA sinB. The sign CHANGES! Plus becomes minus, minus becomes plus. Think: 'Cosine changes the sign.'

When should I use these formulas?

Use them to: (1) Find exact values like sin(75°), (2) Simplify expressions, (3) Prove other identities, (4) Solve equations.

What angles can I break down?

Express angles as sums/differences of standard angles: 30°, 45°, 60°, 90°, etc. For example: 75° = 45° + 30°, 15° = 45° - 30°.

Why is the tangent formula more complex?

tan(A ± B) has a denominator 1 ∓ tanA tanB that can become undefined when the product tanA tanB equals ±1.

How do these relate to double angle formulas?

Double angle formulas are special cases! sin(2A) = sin(A + A), cos(2A) = cos(A + A).

Practice Problems Preview

Test your understanding:

  1. Find the exact value of sin(105°).
  2. Find the exact value of cos(75°).
  3. Find tan(15°) using difference formula.
  4. Simplify: cos(x) cos(2x) + sin(x) sin(2x)
  5. If sin A = 4/5 (Q1) and sin B = 5/13 (Q2), find cos(A + B).
  6. Prove: sin(π/2 + x) = cos(x)
  7. Prove: tan(A + B + C) formula for three angles.
  8. Find sin(A - B) if tan A = 3/4 and tan B = 1/2.
  9. Simplify sin(x + 60°) + sin(x - 60°).

Additional Worked Examples

Special Angles
Find sin(195°)

Solution:

sin195°=sin(180°+15°)=sin15°\sin 195° = \sin(180° + 15°) = -\sin 15°=sin(45°30°)=(sin45°cos30°cos45°sin30°)= -\sin(45° - 30°) = -(\sin 45°\cos 30° - \cos 45°\sin 30°)=(22322212)= -\left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right)=624= -\frac{\sqrt{6} - \sqrt{2}}{4}
Cofunction
Prove cos(π/2 - x) = sin(x)

Proof:

cos(π2x)=cosπ2cosx+sinπ2sinx\cos\left(\frac{\pi}{2} - x\right) = \cos\frac{\pi}{2}\cos x + \sin\frac{\pi}{2}\sin x=0cosx+1sinx=sinx= 0 \cdot \cos x + 1 \cdot \sin x = \sin x \quad \checkmark

Formula Summary Table

FunctionSum FormulaDifference Formula
Sinesin α cos β + cos α sin βsin α cos β - cos α sin β
Cosinecos α cos β - sin α sin βcos α cos β + sin α sin β
Tangent(tan α + tan β)/(1 - tan α tan β)(tan α - tan β)/(1 + tan α tan β)

Practice & Tools

Next Steps