MathIsimple

Solving Triangles

10 problems covering Law of Sines, Law of Cosines, area formulas, and optimization

1
Law of Sines Basic Application

Problem:

In ABC\triangle ABC, given b=2b = 2, B=30°B = 30°, and C=45°C = 45°, find cc.

2
Law of Sines Side-Angle Conversion

Problem:

In ABC\triangle ABC, let sides opposite to angles A,B,CA, B, C be a,b,ca, b, c. Given sin(B+C)+sinA=32\sin(B+C) + \sin A = \frac{3}{2} and b=3cb = \sqrt{3}c, find angle CC.

3
Circumradius from Law of Cosines

Problem:

In ABC\triangle ABC, given c=1c = 1, b=2b = 2, and A=60°A = 60°, find the circumradius RR of ABC\triangle ABC.

4
Triangle Shape Determination

Problem:

In ABC\triangle ABC, given B=2CB = 2C and b=2ab = 2a. Determine the type of triangle.

5
Triangle Area Formula

Problem:

In ABC\triangle ABC, given B=60°B = 60°, sinA=2sinC\sin A = 2\sin C, and b=23b = 2\sqrt{3}. Find the area of ABC\triangle ABC.

6
Maximum Perimeter Problem

Problem:

In ABC\triangle ABC, given ccosA+3csinAb+2a=0c\cos A + \sqrt{3}c\sin A - b + 2a = 0 and c=3c = 3. Find the maximum perimeter of ABC\triangle ABC.

7
Maximum Area Problem

Problem:

In ABC\triangle ABC, given a=1a = 1 and (a+b)sinAsinB+(cb)sinC=0(a+b)\sin A\sin B + (c-b)\sin C = 0. Find the maximum area SS of ABC\triangle ABC.

8
Quadrilateral Area Maximum

Problem:

In convex quadrilateral ABCDABCD, ABADAB \perp AD, AB=AD|AB| = |AD|, BC=4BC = 4, CD=2CD = 2, and cosBCD=14\cos\angle BCD = \frac{1}{4}. Find the maximum area of quadrilateral ABCDABCD.

9
Comprehensive Application

Problem:

In ABC\triangle ABC, given acosB=3a\cos B = \sqrt{3} and bsinA=1b\sin A = 1.

(1) Find B\angle B.

(2) If b=2b = 2, find the area of ABC\triangle ABC.

10
Equilateral Triangle Verification

Problem:

In ABC\triangle ABC, sides a,b,ca, b, c are in arithmetic progression. The circle with diameter ACAC has area 2π2\pi. If the area of ABC\triangle ABC is 232\sqrt{3}, determine the shape of the triangle.