MathIsimple

Trigonometric Graphs & Properties

10 problems covering domain, range, periodicity, monotonicity, and optimization

1
Domain of Trigonometric Function

Problem:

Find the domain of y=12cosxy = \sqrt{\frac{1}{2} - \cos x}.

2
Even Function Parameter

Problem:

Given f(x)=sin(x3+φ)f(x) = \sin\left(\frac{x}{3} + \varphi\right) where 0φ<2π0 \leq \varphi < 2\pi is an even function, find φ\varphi.

3
Graph Translation and Symmetry

Problem:

Translate y=sinx+cosxy = \sin x + \cos x left by mm units (0<m<π0 < m < \pi). If the resulting graph is symmetric about the y-axis, find mm.

4
Period of Product Function

Problem:

Find the minimum positive period of f(x)=sinx3cosx3f(x) = \sin\frac{x}{3}\cos\frac{x}{3}.

5
Period of Tangent Composition

Problem:

Find the minimum positive period of f(x)=2tanx1tan2xf(x) = \frac{2\tan x}{1-\tan^2 x}.

6
Range of Trigonometric Function

Problem:

Find the range of f(x)=sin2xcos2xf(x) = \sin^2 x - \cos^2 x for x[π12,2π3]x \in \left[\frac{\pi}{12}, \frac{2\pi}{3}\right].

7
Range and Domain Relationship

Problem:

Given f(x)=sin(ωx+π6)f(x) = \sin\left(\omega x + \frac{\pi}{6}\right) with domain [m,n][m, n] (m<nm < n) and range [0,1][0, 1], find the range of nmn - m.

8
Zero Points Problem

Problem:

Given f(x)=sin(ωx+π6)f(x) = \sin\left(\omega x + \frac{\pi}{6}\right) (ω>0\omega > 0). If f(π6)=0f\left(\frac{\pi}{6}\right) = 0 and f(x)f(x) has exactly one zero in [π6,5π24]\left[\frac{\pi}{6}, \frac{5\pi}{24}\right], find the minimum value of ω\omega.

9
Monotonicity Interval

Problem:

Given f(x)=sin(ωx+π3)f(x) = \sin\left(\omega x + \frac{\pi}{3}\right) (ω>0\omega > 0). If f(x)f(x) is monotonically increasing on [2π3,π6]\left[-\frac{2\pi}{3}, \frac{\pi}{6}\right], find the range of ω\omega.

10
Maximum Value Problem

Problem:

Given f(x)=2cos2x(sinx+cosx)f(x) = 2\cos^2 x(\sin x + \cos x) (ω>0\omega > 0) has its graph symmetric about x=π12x = \frac{\pi}{12}, and f(x)f(x) has no minimum value on [0,π3]\left[0, \frac{\pi}{3}\right]. Find ω\omega.